#============================================= # Regression by scikit-learn functions #============================================= infile =D:/tkProg/tkProg.main/tkprog_COE/regression/random-poly-ML_with_blank.xlsx outfile=D:\tkProg\tkProg.main\tkprog_COE\regression/random-poly-ML_with_blank-predict.xlsx method=mlp Fraction of test data=0.3 Seed of random() for split data= nmaxiter=1000 For Ridge/LASSO/Elastic Net: alpha=0.1 l1_ratio=0.5 For Random Forest Regression: max_depth=1000 n_estimators=100 max_features=auto For Multilayer Perceptoron Regression: hidden layer sizes=5,5,5 mlp_solver=lbfgs mlp_activation=relu Plot options: plot_boxplot=0 plot_heatmap=0 plot_pairplot=0 Read [D:/tkProg/tkProg.main/tkprog_COE/regression/random-poly-ML_with_blank.xlsx] Data check isnull() y x^0 x^1 x^2 x^3 3 False False False False False 4 False False False False False 5 False False False False False 6 False False False False False 7 False False False False False .. ... ... ... ... ... 99 False False False False False 100 False False False False False 101 False False False False False 102 False False False False False 103 False False False False False [101 rows x 5 columns] isna() y x^0 x^1 x^2 x^3 3 False False False False False 4 False False False False False 5 False False False False False 6 False False False False False 7 False False False False False .. ... ... ... ... ... 99 False False False False False 100 False False False False False 101 False False False False False 102 False False False False False 103 False False False False False [101 rows x 5 columns] ndata=101 ndescriptors=4 all_labels=['y', 'x^0', 'x^1', 'x^2', 'x^3'] x_labels =['x^0', 'x^1', 'x^2', 'x^3'] o_label =y Split to training and test data Number of training data:70 Number of test data:31 Covariances of standardized values ( 0, 1) ( y, x^0): 0.3066 ( 0, 2) ( y, x^1): 0.2906 ( 0, 3) ( y, x^2): 0.2826 ( 0, 4) ( y, x^3): 0.2839 ( 1, 2) ( x^0, x^1): 0.2865 ( 1, 3) ( x^0, x^2): 0.2799 ( 1, 4) ( x^0, x^3): 0.2780 ( 2, 3) ( x^1, x^2): 0.2777 ( 2, 4) ( x^1, x^3): 0.2718 ( 3, 4) ( x^2, x^3): 0.2666 Execute regression Standaridization Fit Calculate predicted values Scores: Mean absolute error (MAE): training 2.97 test: 3.97 Mean squared error (MSE) : training 13 test: 23 Root MSE (RMSE) : training 3.61 test: 4.79 R^2 score : training 0.966 test: 0.862 Parameters: Save predict data to [D:\tkProg\tkProg.main\tkprog_COE\regression/random-poly-ML_with_blank-predict.xlsx] plot Plot index - input/prediction Plot input - prediction Press ENTER to terminate clicked for the data [training input] in the - plot (inf #0 data index #7) # 7: : 67 : 25.49 0: index: 67 1: x^0: 1 2: x^1: 3.2 3: x^2: 10.24 4: x^3: 32.77