Information in tkutils.set_exception(): Set excption handler sys.excepthook #======================================================== # single peak fit sample program #======================================================== Check infile parameter: Input file [peaks.xlsx] is given. Paramter file is set to [D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks.in]. Update paramers from command line arguments i=1 positional arg: error Read configration file [D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks.in] Read parameters from [D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks.in] alpha: 0 bg_c0: 0 bg_c1: 0 converted_file: cv: daemon: 0 datafile: peaks-cal.xlsx dx: 1e-05 ffitfiles: 0 fhistory: 1 figsize: [8, 6] file1: error file2: file3: file4: file5: fitfile: peaks-fit.xlsx fitfile_template: {filebody}_parameters.csv fmax_plot: 10 fmax_record: 2000 fmin_max_mlr: 60 fontsize: 16 fplot: 1 ga_nmaxiter: 3 graphupdateinterval: 10 help: 0 hidden_layer_sizes: 3,3,3 historyfile: D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks-history.xlsx I0: 1 infile: peaks.xlsx initialize_method: simplex input_template: interval: 50 ix_plot: ix_sort: jac: 3-points kvariance: 6 l1_ratio: 0.5 legend_fontsize: 12 logfile: D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks-out.txt max_iter_mlp: 1000 max_num_probes: 1 method: nelder-mead mode: fit mutation_rate: 0.01 n_restarts_optimizer: 50 ncal_error: 11 Nmax: 1e+23 nmax_surrogate_trial: 5 nmaxcall: 10000 nmaxdata: 20 nmaxiter: 1000 Nmin: 0 nohup: 0 nparents: 5 nsample: 100 num_rand_basis: 400 nx: 5 outfile: input-repeat.xlsx parameterfile: D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks.in plot_interval: 5 print_interval: 5 run: 1 sample: score_mode: EI seed: surrogate_method: cg surrogate_model: gpr surrogate_scores: max target_var: 0 test_data_ratio: 0.2 Tmax: 1000 Tmin: 0 tol: 1e-05 trainfile: fit_db.xlsx use_cv: 0 use_tkplt: 0 w: 0.5 x0: x1: x_scale: xatol: 0.0001 xc: 0 xlabel: 0 y_scale: ylabel: 1 infile: peaks.xlsx parameterfile: D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks.in stop file: D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\stop Estimate errors for fitted parameters: In tkminimize_func.read_parameters(): Read parameters from [D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks.in] mode : error fplot : 1 fhistory : 1 ffitfiles : 0 stop path : D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\stop infile : peaks.xlsx outfile : input-repeat.xlsx config parameter file : D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks.in fitting parameter file: D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks_parameters.csv history file : D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks-history.xlsx Fitting configuration method : nelder-mead jac : 3-points tol : 1e-05 nmaxiter: 1000 nmaxcall: 10000 y_scale : Fitting parameters red from [D:\git\tkProg\tkprog_COE\optimize\optimize_peakfit1\test\peaks_parameters.csv]: 00: bg_c0= 0.11091 (id=1) (linear=1) penality: 1 * (-1e+10 - 1e+10) 01: bg_c1= 0.00687364 (id=1) (linear=1) penality: 1 * (-1e+10 - 1e+10) 02: I0= 1.39069 (id=1) (linear=1) penality: 1 * (0 - 1e+10) 03: xc= 0.288756 (id=1) (linear=0) penality: 1 * (0 - 200) 04: w= 0.601388 (id=1) (linear=0) penality: 1 * (0.01 - 10) Read input data from [peaks.xlsx] minimize_func.read_input_data(): Read input data from [peaks.xlsx] Save input data repeat to [input-repeat.xlsx] Fitting parameters: 00: bg_c0= 0.11091 (id=1) (linear=1) penality: 1 * (-1e+10 - 1e+10) 01: bg_c1= 0.00687364 (id=1) (linear=1) penality: 1 * (-1e+10 - 1e+10) 02: I0= 1.39069 (id=1) (linear=1) penality: 1 * (0 - 1e+10) 03: xc= 0.288756 (id=1) (linear=0) penality: 1 * (0 - 200) 04: w= 0.601388 (id=1) (linear=0) penality: 1 * (0.01 - 10) plot: 3 x 2 for 5 graphs Calculate likelihood function for var#0/5 bg_c0= 0.11091 for 11 points Error statistics for bg_c0: # of data : 101 mean : -7.1746e-06 variance : 0.00206984 S2=sum(error^2): 0.209054 xrange: -1e+10 - 1e+10 S2= 101 p0= 1.16984e-22 S2_target=107 *** Warning in tkFit_mxy_flex.build_likelihood_func(): xlim_max=10000000000 is too large for nmax_iter=10 nmaxiter is changed to 44, kstep is changed to 382.0 calculate in xrange: 0.11091 - 0.122051 at S2=107.065 xlim_min=-10000000000 *** Warning in tkFit_mxy_flex.build_likelihood_func(): xlim_min=-10000000000 is too large for nmax_iter=10 nmaxiter is changed to 55, kstep is changed to 115.0 calculate in xrange: 0.0997686 - 0.11091 at S2=107.049 Save to [error_bg_c0.xlsx] Save to [error_bg_c0.xlsx] index at maximum p in p_list:10 x_min_s at p(sigma): 0.106375 x_max_s at p(sigma): 0.115431 Accuracy within one sigma: 000: bg_c0 : 0.11091 -0.004535 + 0.004521 in ( 0.106375 - 0.115431) Calculate likelihood function for var#1/5 bg_c1= 0.00687364 for 11 points Error statistics for bg_c1: # of data : 101 mean : -7.1746e-06 variance : 0.00206984 S2=sum(error^2): 0.209054 xrange: -1e+10 - 1e+10 S2= 101 p0= 1.16984e-22 S2_target=107 *** Warning in tkFit_mxy_flex.build_likelihood_func(): xlim_max=10000000000 is too large for nmax_iter=10 nmaxiter is changed to 44, kstep is changed to 382.0 calculate in xrange: 0.00687364 - 0.0140359 at S2=106.942 xlim_min=-10000000000 *** Warning in tkFit_mxy_flex.build_likelihood_func(): xlim_min=-10000000000 is too large for nmax_iter=10 nmaxiter is changed to 55, kstep is changed to 115.0 calculate in xrange: -0.000288635 - 0.00687364 at S2=106.948 Save to [error_bg_c1.xlsx] Save to [error_bg_c1.xlsx] index at maximum p in p_list:10 x_min_s at p(sigma): 0.00393708 x_max_s at p(sigma): 0.00981401 Accuracy within one sigma: 000: bg_c0 : 0.11091 -0.004535 + 0.004521 in ( 0.106375 - 0.115431) 001: bg_c1 : 0.00687364 -0.002937 + 0.00294 in ( 0.00393708 - 0.00981401) Calculate likelihood function for var#2/5 I0= 1.39069 for 11 points Error statistics for I0: # of data : 101 mean : -7.1746e-06 variance : 0.00206984 S2=sum(error^2): 0.209054 xrange: 0 - 1e+10 S2= 101 p0= 1.16984e-22 S2_target=107 *** Warning in tkFit_mxy_flex.build_likelihood_func(): xlim_max=10000000000 is too large for nmax_iter=10 nmaxiter is changed to 44, kstep is changed to 382.0 calculate in xrange: 1.39069 - 1.41934 at S2=106.974 xlim_min=0 calculate in xrange: 1.3619 - 1.39069 at S2=107.041 Save to [error_I0.xlsx] Save to [error_I0.xlsx] index at maximum p in p_list:10 x_min_s at p(sigma): 1.37898 x_max_s at p(sigma): 1.40242 Accuracy within one sigma: 000: bg_c0 : 0.11091 -0.004535 + 0.004521 in ( 0.106375 - 0.115431) 001: bg_c1 : 0.00687364 -0.002937 + 0.00294 in ( 0.00393708 - 0.00981401) 002: I0 : 1.39069 -0.01171 + 0.01173 in ( 1.37898 - 1.40242) Calculate likelihood function for var#3/5 xc= 0.288756 for 11 points Error statistics for xc: # of data : 101 mean : -7.1746e-06 variance : 0.00206984 S2=sum(error^2): 0.209054 xrange: 0 - 200 S2= 101 p0= 1.16984e-22 S2_target=107 *** Warning in tkFit_mxy_flex.build_likelihood_func(): xlim_max=200 is too large for nmax_iter=10 nmaxiter is changed to 13, kstep is changed to 88.0 calculate in xrange: 0.288756 - 0.300945 at S2=106.762 xlim_min=0 calculate in xrange: 0.276348 - 0.288756 at S2=107.02 Save to [error_xc.xlsx] Save to [error_xc.xlsx] index at maximum p in p_list:10 x_min_s at p(sigma): 0.283709 x_max_s at p(sigma): 0.293846 Accuracy within one sigma: 000: bg_c0 : 0.11091 -0.004535 + 0.004521 in ( 0.106375 - 0.115431) 001: bg_c1 : 0.00687364 -0.002937 + 0.00294 in ( 0.00393708 - 0.00981401) 002: I0 : 1.39069 -0.01171 + 0.01173 in ( 1.37898 - 1.40242) 003: xc : 0.288756 -0.005047 + 0.005091 in ( 0.283709 - 0.293846) Calculate likelihood function for var#4/5 w= 0.601388 for 11 points Error statistics for w: # of data : 101 mean : -7.1746e-06 variance : 0.00206984 S2=sum(error^2): 0.209054 xrange: 0.01 - 10 S2= 101 p0= 1.16984e-22 S2_target=107 *** Warning in tkFit_mxy_flex.build_likelihood_func(): xlim_max=10 is too large for nmax_iter=10 nmaxiter is changed to 7, kstep is changed to 38.0 calculate in xrange: 0.601388 - 0.623416 at S2=114.147 xlim_min=0.01 *** Warning in tkFit_mxy_flex.build_likelihood_func(): xlim_min=0.01 is too large for nmax_iter=10 nmaxiter is changed to 16, kstep is changed to 23.0 calculate in xrange: 0.586834 - 0.601388 at S2=106.914 Save to [error_w.xlsx] Save to [error_w.xlsx] index at maximum p in p_list:10 x_min_s at p(sigma): 0.595376 x_max_s at p(sigma): 0.607408 Accuracy within one sigma: 000: bg_c0 : 0.11091 -0.004535 + 0.004521 in ( 0.106375 - 0.115431) 001: bg_c1 : 0.00687364 -0.002937 + 0.00294 in ( 0.00393708 - 0.00981401) 002: I0 : 1.39069 -0.01171 + 0.01173 in ( 1.37898 - 1.40242) 003: xc : 0.288756 -0.005047 + 0.005091 in ( 0.283709 - 0.293846) 004: w : 0.601388 -0.006012 + 0.00602 in ( 0.595376 - 0.607408) time at startup:24/11/19 12:21:40 time at end:24/11/19 12:21:42 Elapsed time from startup to end: 2.80777 sec Warning in tkplotevent.on_click_default(): axis is not matched with line#11