SYSTEM = SiGe [PAW_PBE54] (scf) #POTFiles: /home/tkamiya/bin/Perl/VASP/potpaw_PBE54/elements/Si/POTCAR #POTFiles: /home/tkamiya/bin/Perl/VASP/potpaw_PBE54/elements/Ge/POTCAR Start parameters for this Run: #ISTART: 0:from scratch 1:restart with the same Ecut # 2:restart with the same basis set 3:full restart ISTART = 0 #ICHARG: 0:Charge from wavef 1: CHGCAR 2:Atomic charge # +10: Non-selfconsistent #ICHARG = 0 #INIWAV: Only for ISTART=0 #INIWAV = 1 #NWRITE = 2 # Larger, more verbose. Must be 3 for phonon. #PREC: High|Accurate|Normal|Medium|Low PREC = High #NBANDS: Set NBANDS to double for collinear calculation #NBANDS = #ADDGRID = .TRUE. Electronic Relaxation #NELECT = #Energy correction EDIFF = 1.0e-4 # Critera for relaxation. In energy for positive value, force for negative value EDIFFG = 1.0e-3 #LREAL: .TRUE.|.FALSE.|A|O LREAL = Auto #ENCUT = 200.00 eV #Algorithm 8:CG, 38: Davidson, 48:RMM=DIIS, 8,48: for NPAR=1, 48: for NPAR > 1 #Algorithm Normal Damped All Diag # For hybrid: All, Diag, or Damped. ISMEAR=-5 is not recommended for All #IALGO = 48 ALGO = Normal #LDIAG = .TRUE. LHFCALC = .TRUE. AEXX = 0.25 AGGAC = 1.0 ALDAC = 1.0 HFSCREEN = 0.2 #ENCUTFOCK = 0 PRECFOCK = N #PrecFock=L|M|F|N|A #LMAXFOCK = 4 TIME = 0.4 #NKRED = 2 #NKREDX = #NKREDY = #NKREDZ = #IMIX = 1 #AMIX = a #BMIX = 2.0 #NSIM = 4 #NELM: Number of electronic steps #NELM = 60 NELMIN = 0 # 5 at least for hybrid band calc #NELMDL = 3 # of ELM steps #IDIPOL = 4 #DIPOL = 0.00000 0.00000 0.00000 #LDIPOL = .TRUE. #Spin-orbit #LSORBIT = .TRUE. #SAXIS = 0 0 1 #Non-collinear setup #LNONCOLLINEAR = .TRUE. #MAGMOM = 0 0 1 0 0 1 0 0 1 0 0 1 #NBANDS: Set NBANDS to double of collinear calculation #GGA_COMPAT = .FALSE. #ISPIN: 1:Non-polarized 2:Spin-polarized ISPIN = 1 #mmmmmm = SiSiGeGe #MAGMOM = 0 0 0 0 #NUPDOWN = 0 #LDA+U setup #LDAU = .TRUE. #LDAUTYPE: 1: Rotational invaliant LSDA+U 4:the same as 1, but LDA+U # 2: Dudarev's LSDA+U #LDAUTYPE = 2 #LDAUL = 2 -1 #LDAUU = 4.0 0.0 #LDAUJ = 0.0 0.0 #LDAUPRINT: 0:silent 1:medium 2:detail #LDAUPRINT = 2 #PAW Control: # These are very important also for L(S)DA+U calculations #LMAXMIX: Default: 2 # Use 4 and 6 for d and f orbitals in L(S)DA+U calculations #LMAXMIX = 4 #LMAXPAW: Default: 2*lmax # -1: No on-site correction 0: Only spherical terms #LMAXPAW = 0 # van der Waals correction by DFT-D method of Grimme #LVDW = .TRUE. # Other vdW-DF #LUSE_VDW = .TRUE. # vdWDFT (Dion): AGGAC=0, GGA=RE, no Zab_vdW # vdW2 : AGGAC=0, GGA=ML, no Zab_vdW=-1.8867) # optPBE : AGGAC=0, GGA=OR, no Zab_vdW) # optB88 : AGGAC=0, GGA=BO, PARAM1=0.1833333333, PARAM2=0.22, no Zab_vdW) # optB86b: AGGAC=0, GGA=MK, PARAM1=0.1234, PARAM2=1.0, no Zab_vdW) #GGA = RE #PARAM1 = 0.1234 #PARAM2 = 1.0000 #Zab_vdW = -1.8867 Ionic Relaxation #ISIF: 0:Ion relax only 2:Cell fixed/Calc.Pressure 3:VC-Relax/VC-MD # 4: Variable shape fixed V (not implemented) 7: fixed shape variable volume (not implemented) #ISIF = 3 #NSW: Number of ion steps #NSW = 300 # Invoke Langevin dynamics (MDALGO=3) #MDALGO=3 # Friction coefficients for atomic degrees of freedom, one for each species defiend in POSCAR # (in ps^-1, typically 0(no thermostating) - 100 ps^-1) # See e.g. book of Allen and Tildesley: Computer simulations of liquids #LANGEVIN_GAMMA=100 100 # Friction coefficients for lattice degrees of freedom #LANGEVIN_GAMMA_L=100 # Fictitious mass for lattice degrees of freedom (in amu) used # in Parrinello-Rahman dynamics (Default 1000, typically 1-10?) #PMASS=10 #IBRION: -1:Ion position fiexed 0:MD 1: Quasi-Newton 2:Conjugate Gradient 3: Damped MD, use dumping factor(SMASS/POTIM) 5,6: Hessian matrix calculated by finite-difference. 6 considers symmetry 7,8: Hessian matrix calculated analytically. 8 considers symmetry #IBRION = 2 # Nose mass definition: -3: a micro canonical ensemble (constant energy molecular dynamics) # -2: the initial velocities are kept constant -1: the velocities are scaled each NBLOCK step # >=0: a canonical ensemble by Nose algorism #SMASS = -3 #NBLOCK = 50 #POTIM = 2.0 fs time-step for ion-motion #TEBEG = 300.0 #TEEND = 300.0 PSTRESS = 0.0 kBar #POMASS and ZVAL are read from POTCAR for default #POMASS = 102.91 #ZVAL = 11.0 #ISYM: 0:Break symmetry 1,2:Keep symmetry 2:More effecient memory use ISYM = 1 #SYMPREC: deault 1e-5 #SYMPREC = 1e-5 Functional #Only for LDA-based pseudopotentials #GGA = PE #LEPSILON=.TRUE. #LRPA=.FALSE. #LOPTICS=.TRUE. #CSHIFT=0.1 File write controls: LWAVE = .TRUE. LCHARGE = .TRUE. # LVHAR, LVTOT: Write Hartree (LVHAR=.T.) or Total (LVTOT=.T.)local potential to LOCPOT in vasp.5.x #LVHAR = .TRUE. LVTOT = .TRUE. #LORBIT = 2 LELF = .FALSE. # LAECHG: Write core charge to AECCAR0, valance charge to AECCAR2 e.g. for Bader analysis LAECHG = .TRUE. Parallelization configuration: #Parallelizaion over bands and plane wave coeff.(the latter is default) # For dense cluster: NPAR ~ sqrt(Number of cores) or Number of cores per computer node #NPAR = #NCORE = 1 # NCORE = Total number of cores / NPAR LPLANE = .TRUE. #KPAR = DOS related values: #Elements: Si Ge VCA = 0.5000 0.5000 #Elements: Si Ge RWIGS = 1.312 1.217 #ISMEAR: -1: Fermi-smearing 0: Gaussian smearing N: Methfessel-Paxton order N # -4 tetrahedron method without Blochl corrections # -5 tetrahedron method with Blochl corrections # use -5 for semiconductors/insulators, 1/2 for metals # use -1/0/1/2 for Band ISMEAR = -5 SIGMA = 0.1 #DOS range and # of mesh #EMIN = -35 #EMAX = 15 #NEDOS = 5000 Band decomposed charge density: #LPARD = .TRUE. #Mode: 0: Total charge density incl. unoccupied bands. # -1: Usual total charge density (default). # -2: Partial charge density within energies specified by EINT. # -3: The same as -2, but the energy is measured from the Fermi energy. #NBMOD = 0 #Energy range to be incorporated #EINT = -5.0 0.0 #Indexes of bands to be used (see EIGENVAL or OUTCAR) #IBNAD = 20 21 22 23 #Indexes of K points to be used (see IBZKPT) #KPUSE = 1 2 3 4 #Write band decomposed density to PARCHG.nb.* separately if .TRUE. #LSEPB = .TRUE. #Write K-point decomposed density to PARCHG.*.nk separately if .TRUE. #LSEPK = .TRUE.