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This document is a developer guide to the LAMMPS molecular dynamics
package, whose WWW site is at lammps.sandia.gov. It describes the internal
structure and algorithms of the code. Sections will be added as we have time,
and in response to requests from developers and users.
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1 LAMMPS source files

LAMMPS source files are in two directories of the distribution tarball. The
src directory has the majority of them, all of which are C++ files (*.cpp and
*h). Many of these files are in the src directory itself. There are also dozens of
”packages”, which can be included or excluded when LAMMPS is built. See the
doc/Section_build.html section of the manual for more information about pack-
ages, or type "make” from within the src directory, which lists package-related
commands, such as “make package-status”. The source files for each package
are in an all-uppercase sub-directory of src, like src/MOLECULE or src/USER-
CUDA. If the package is currently installed, copies of the package source files
will also exist in the src directory itself. The src/STUBS sub-directory is not a
package but contains a dummy version of the MPI library, used when building
a serial version of the code.

The lib directory also contains source code for external libraries, used by
a few of the packages. Each sub-directory, like meam or gpu, contains the
source files, some of which are in different languages such as Fortran. The files
are compiled into libraries from within each sub-directory, e.g. performing a
"make” in the lib/meam directory creates a libmeam.a file. These libraries are
linked to during a LAMMPS build, if the corresponding package is installed.

LAMMPS C++ source files almost always come in pairs, such as run.cpp
and run.h. The pair of files defines a C++ class, the Run class in this case,
which contains the code invoked by the "run” command in a LAMMPS input
script. As this example illustrates, source file and class names often have a one-
to-one correspondence with a command used in a LAMMPS input script. Some
source files and classes do not have a corresponding input script command, e.g.
force.cpp and the Force class. They are discussed in the next section.



2 Class hierarchy of LAMMPS

Though LAMMPS has a lot of source files and classes, its class hierarchy is
quite simple, as outlined in Fig 1. Each boxed name refers to a class and has a
pair of associated source files in lammps/src, e.g. memory.cpp and memory.h.
More details on the class and its methods and data structures can be found by
examining its *.h file.

LAMMPS (lammps.cpp/h) is the top-level class for the entire code. It holds
an ”instance” of LAMMPS and can be instantiated one or more times by a
calling code. For example, the file src/main.cpp simply instantiates one instance
of LAMMPS and passes it the input script.

The file src/library.cpp contains a C-style library interface to the LAMMPS
class. See the lammps/couple and lammps/python directories for examples of
simple programs that use LAMMPS through its library interface. A driver
program can instantiate the LAMMPS class multiple times, e.g. to embed
several atomistic simulation regions within a mesoscale or continuum simulation
domain.

There are a dozen or so top-level classes within the LAMMPS class that are
visible everywhere in the code. They are shaded blue in Fig 1. Thus any class
can refer to the y-coordinate of local atom I as atom—x[i][1]. This visibility is
enabled by a bit of cleverness in the Pointers class (see src/pointers.h) which
every class inherits from.

There are a handful of virtual parent classes in LAMMPS that define what
LAMMPS calls "styles”. They are shaded red in Fig 1. Each of these are parents
of a number of child classes that implement the interface defined by the parent
class. For example, the fix style has around 100 child classes. They are the
possible fixes that can be specified by the fix command in an input script, e.g.
fix nve, fix shake, fix ave/time, etc. The corresponding classes are Fix (for the
parent class), FixNVE, FixShake, FixAveTime, etc. The source files for these
classes are easy to identify in the src directory, since they begin with the word
’fix” | e,g, fix nve.cpp, fix_shake,cpp, fix_ave_time.cpp, etc.

The one exception is child class files for the ”command” style. These imple-
ment specific commands in the input script that can be invoked before/after /between
runs or which launch a simulation. Examples are the create_box, minimize, run,
and velocity commands which encode the CreateBox, Minimize, Run, and Veloc-
ity classes. The corresponding files are create_box,cpp, minimize.cpp, run.cpp,
and velocity.cpp. The list of command style files can be found by typing ”grep
COMMAND_CLASS *.h” from within the src directory, since that word in the
header file identifies the class as an input script command. Similar words can
be grepped to list files for the other LAMMPS styles. E.g. ATOM_CLASS,
PAIR_CLASS, BOND_CLASS, REGION_CLASS, FIX_CLASS, COMPUTE_CLASS,
DUMP_CLASS, etc.

More details on individual classes in Fig 1 are as follows:

e The Memory class handles allocation of all large vectors and arrays.

e The Error class prints all error and warning messages.
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Figure 1: Class hierarchy within LAMMPS source code.

The Universe class sets up partitions of processors so that multiple simu-
lations can be run, each on a subset of the processors allocated for a run,
e.g. by the mpirun command.

The Input class reads an input script, stores variables, and invokes stand-
alone commands that are child classes of the Command class.

As discussed above, the Command class is a parent class for certain input
script commands that perform a one-time operation before/after /between
simulations or which invoke a simulation. They are instantiated from
within the Input class, invoked, then immediately destructed.

The Finish class is instantiated to print statistics to the screen after a
simulation is performed, by commands like run and minimize.

The Special class walks the bond topology of a molecular system to find
1st, 2nd, 3rd neighbors of each atom. It is invoked by several commands,
like read_data, read_restart, and replicate.



The Atom class stores all per-atom arrays. More precisely, they are allo-
cated and stored by the AtomVec class, and the Atom class simply stores
a pointer to them. The AtomVec class is a parent class for atom styles,
defined by the atom_style command.

The Update class holds an integrator and a minimizer. The Integrate class
is a parent style for the Verlet and rRESPA time integrators, as defined by
the run_style input command. The Min class is a parent style for various
energy minimizers.

The Neighbor class builds and stores neighbor lists. The NeighList class
stores a single list (for all atoms). The NeighRequest class is called by
pair, fix, or compute styles when they need a particular kind of neighbor
list.

The Comm class performs interprocessor communication, typically of ghost
atom information. This usually involves MPI message exchanges with 6
neighboring processors in the 3d logical grid of processors mapped to the
simulation box. Sometimes the Irregular class is used, when atoms may
migrate to arbitrary processors.

The Domain class stores the simulation box geometry, as well as geometric
Regions and any user definition of a Lattice. The latter are defined by
region and lattice commands in an input script.

The Force class computes various forces between atoms. The Pair parent
class is for non-bonded or pair-wise forces, which in LAMMPS lingo in-
cludes many-body forces such as the Tersoff 3-body potential. The Bond,
Angle, Dihedral, Improper parent classes are styles for bonded interac-
tions within a static molecular topology. The KSpace parent class is for
computing long-range Coulombic interactions. Omne of its child classes,
PPPM, uses the FFT3D and Remap classes to communicate grid-based
information with neighboring processors.

The Modify class stores lists of Fix and Compute classes, both of which
are parent styles.

The Group class manipulates groups that atoms are assigned to via the
group command. It also computes various attributes of groups of atoms.

The Output class is used to generate 3 kinds of output from a LAMMPS
simulation: thermodynamic information printed to the screen and log file,
dump file snapshots, and restart files. These correspond to the Thermo,
Dump, and WriteRestart classes respectively. The Dump class is a parent
style.

The Timer class logs MPI timing information, output at the end of a run.



3 How a timestep works

The first and most fundamental operation within LAMMPS to understand is
how a timestep is structured. Timestepping is performed by the Integrate class
within the Update class. Since Integrate is a parent class, corresponding to
the run_style input script command, it has child classes. In this section, the
timestep implemented by the Verlet child class is described. A similar timestep
is implemented by the Respa child class, for the rRESPA hierarchical timestep-
ping method. The Min parent class performs energy minimization, so does not
perform a literal timestep. But it has logic similar to what is described here, to
compute forces and invoke fixes at each iteration of a minimization. Differences
between time integration and minimization are highlighted at the end of this
section.

The Verlet class is encoded in the src/verlet.cpp and verlet.h files. It im-
plements the velocity-Verlet timestepping algorithm. The workhorse method is
Verlet::run(), but first we highlight several other methods in the class.

e The init() method is called at the beginning of each dynamics run. Tt
simply sets some internal flags, based on user settings in other parts of
the code.

e The setup() or setup_minimal() methods are also called before each run.
The velocity-Verlet method requires current forces be calculated before
the first timestep, so these routines compute forces due to all atomic in-
teractions, using the same logic that appears in the timestepping described
next. A few fixes are also invoked, using the mechanism described in the
next section. Various counters are also initialized before the run begins.
The setup_minimal() method is a variant that has a flag for performing
less setup. This is used when runs are continued and information from
the previous run is still valid. For example, if repeated short LAMMPS
runs are being invoked, interleaved by other commands, via the “pre no”
and “every” options of the run command, the setup_minimal() method is
used.

e The force_clear() method initializes force and other arrays to zero before
each timestep, so that forces (torques, etc) can be accumulated.

Now for the Verlet::run() method. Its structure in hi-level pseudo code is
shown in Fig 2. In the actual code in src/verlet.cpp some of these operations
are conditionally invoked.

The ev_set() method (in the parent Integrate class), sets two flags (eflag
and vflag) for energy and virial computation. Each flag encodes whether global
and/or per-atom energy and virial should be calculated on this timestep, because
some fix or variable or output will need it. These flags are passed to the various
methods that compute particle interactions, so that they can skip the extra
calculations if the energy and virial are not needed. See the comments with the
Integrate::ev_set() method which document the flag values.



At various points of the timestep, fixes are invoked, e.g. fix—initial_integrate().
In the code, this is actually done via the Modify class which stores all the Fix
objects and lists of which should be invoked at what point in the timestep.
Fixes are the LAMMPS mechanism for tailoring the operations of a timestep
for a particular simulation. As described elsewhere (unwritten section), each
fix has one or more methods, each of which is invoked at a specific stage of
the timestep, as in Fig 2. All the fixes defined in an input script with an ini-
tial_integrate() method are invoked at the beginning of each timestep. Fix nve,
nvt, npt are examples, since they perform the start-of-timestep velocity-Verlet
integration to update velocities by a half-step, and coordinates by a full step.
The post_integrate() method is next. Only a few fixes use this, e.g. to reflect
particles off box boundaries in the FixWallReflect class.

The decide() method in the Neighbor class determines whether neighbor lists
need to be rebuilt on the current timestep. If not, coordinates of ghost atoms
are acquired by each processor via the forward_comm() method of the Comm
class. If neighbor lists need to be built, several operations within the inner if
clause of Fig 2 are first invoked. The pre_exchange() method of any defined
fixes is invoked first. Typically this inserts or deletes particles from the system.

Periodic boundary conditions are then applied by the Domain class via its
pbe() method to remap particles that have moved outside the simulation box
back into the box. Note that this is not done every timestep. but only when
neighbor lists are rebuilt. This is so that each processor’s sub-domain will have
consistent (nearby) atom coordinates for its owned and ghost atoms. It is also
why dumped atom coordinates can be slightly outside the simulation box.

The box boundaries are then reset (if needed) via the reset_box() method of
the Domain class, e.g. if box boundaries are shrink-wrapped to current particle
coordinates. A change in the box size or shape requires internal information
for communicating ghost atoms (Comm class) and neighbor list bins (Neighbor
class) be updated. The setup() method of the Comm class and setup_bins()
method of the Neighbor class perform the update.

The code is now ready to migrate atoms that have left a processor’s geo-
metric sub-domain to new processors. The exchange() method of the Comm
class performs this operation. The borders() method of the Comm class then
identifies ghost atoms surrounding each processor’s sub-domain and communi-
cates ghost atom information to neighboring processors. It does this by loop-
ing over all the atoms owned by a processor to make lists of those to send to
each neighbor processor. On subsequent timesteps, the lists are used by the
Comm::forward_comm() method.

Fixes with a pre_neighbor() method are then called. These typically re-build
some data structure stored by the fix that depends on the current atoms owned
by each processor.

Now that each processor has a current list of its owned and ghost atoms,
LAMMPS is ready to rebuild neighbor lists via the build() method of the Neigh-
bor class. This is typically done by binning all owned and ghost atoms, and
scanning a stencil of bins around each owned atom’s bin to make a Verlet list
of neighboring atoms within the force cutoff plus neighbor skin distance.



In the next portion of the timestep, all interaction forces between parti-
cles are computed, after zeroing the per-atom force vector via the force_clear()
method. If the newton flag is set to “on” by the newton command, forces on
both owned and ghost atoms are calculated.

Pairwise forces are calculated first, which enables the global virial (if re-
quested) to be calculated cheaply (at the end of the Pair::compute() method),
by a dot product of atom coordinates and forces. By including owned and
ghost atoms in the dot product, the effect of periodic boundary conditions is
correctly accounted for. Molecular topology interactions (bonds, angles, dihe-
drals, impropers) are calculated next. The final contribution is from long-range
Coulombic interactions, invoked by the KSpace class.

If the newton flag is on, forces on ghost atoms are communicated and
summed back to their corresponding owned atoms. The reverse_comm() method
of the Comm class performs this operation, which is essentially the inverse op-
eration of sending copies of owned atom coordinates to other processor’s ghost
atoms.

At this point in the timestep, the total force on each atom is known. Addi-
tional force constraints (external forces, SHAKE, etc) are applied by Fixes that
have a post_force() method. The second half of the velocity-Verlet integration
is then performed (another half-step update of the velocities) via fixes like nve,
nvt, npt.

At the end of the timestep, fixes that define an end_of step() method are
invoked. These typically perform a diagnostic calculation, e.g. the ave/time
and ave/spatial fixes. The final operation of the timestep is to perform any
requested output, via the write() method of the Output class. There are 3
kinds of LAMMPS output: thermodynamic output to the screen and log file,
snapshots of atom data to a dump file, and restart files. See the thermo_style,
dump, and restart commands for more details.

The iteration performed by an energy minimization is similar to the dynam-
ics timestep of Fig 2. Forces are computed, neighbor lists are built as needed,
atoms migrate to new processors, and atom coordinates and forces are communi-
cated to neighboring processors. The only difference is what Fix class operations
are invoked when. Only a subset of LAMMPS fixes are useful during energy
minimization, as explained in their individual doc pages. The relevant Fix class
methods are min_pre_exchange(), min_pre_force(), and min_post_force(). Each
is invoked at the appropriate place within the minimization iteration. For ex-
ample, the min_post_force() method is analogous to the post_force() method for
dynamics; it is used to alter or constrain forces on each atom, which affects the
minimization procedure.



4 Extending LAMMPS

The Section_modify.html file in the doc directory of the LAMMPS distribution
gives an overview of how LAMMPS can be extended by writing new classes
that derive from existing parent classes in LAMMPS. Here, some specific coding
details are provided for writing a new fix.

4.1 New fixes
(this section provided by Kirill Lykov)

Writing fixes is a flexible way of extending LAMMPS. Users can implement
many things using fixes:

e changing particles attributes (positions, velocities, forces, etc.). Example:
FixFreeze.

e reading/writing data. Example: FixRestart.
e implementing boundary conditions. Example: FixWall.

e saving information about particles for future use (previous positions, for
instance). Example: FixStoreState.

All fixes are derived from class Fix and must have constructor with the
signature: FixMine(class LAMMPS *, int, char **).

Every fix must be registered in LAMMPS by writing the following lines of
code in the header before include guards:

#ifdef FIX_CLASS
FixStyle(your/fix/name,FixMine)
#else

Where ”your/fix/name” is a name of your fix in the script and FixMine is
the name of the class. This code allows LAMMPS to find your fix when it
parses input script. In addition, your fix header must be included in the file
"style_fix.h”. In case if you use LAMMPS make, this file is generated automat-
ically - all files starting with prefix fix_ are included, so call your header the
same way. Otherwise, dont forget to add your include into ”style_fix.h”.

Let’s write a simple fix which will print average velocity at the end of each
timestep. First of all, implement a constructor:

FixPrintVel: :FixPrintVel (LAMMPS *1lmp, int narg, char **arg)
: Fix(1mp, narg, arg)
{
if (narg < 4)
error—>all(FLERR,"Illegal fix print command");



nevery = atoi(arg[3]);
if (nevery <= 0)
error->all(FLERR,"Illegal fix print command");

In the constructor you should parse your fix arguments which are specified in
the script. All fixes have pretty the same syntax: fix [fix_identifier| [group_name]
[fix-name] [fix_arguments]|. The first 3 parameters are parsed by Fix class con-
structor, while [fix_arguments] should be parsed by you. In our case, we need
to specify how often we want to print an average velocity. For instance, once in
50 timesteps: fix 1 print/vel 50. There is a special variable in Fix class called
nevery which specifies how often method end_of step() is called. Thus all we
need to do is just set it up.

The next method we need to implement is setmask():

int FixPrintVel: :setmask()

{
int mask = O;
mask |= FixConst::END_OF_STEP;
return mask;

}

Here user specifies which methods of your fix should be called during the exe-
cution. For instance, END_OF_STEP corresponds to the end_of_step() method.
Overall, there are 8 most important methods, methods are called in predefined
order during the execution of the verlet algorithm as was mentioned in the
Section 3:

e initial_integrate()
e post_integrate()
e pre_exchange()

e pre_neighbor()

e pre_force()

e post_force()

e final_integrate()
e end_of step()

Fix developer must understand when he wants to execute his code. In case
if we want to write FixPrintVel, we need only end_of_step():
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void FixPrintVel::end_of_step()

{

// for add3, scale3
using namespace MathExtra;

double** v atom->v;
int nlocal = atom->nlocal;
double localAvgVel[4]; // 4th element for particles count
memset (localAvgVel, 0, 4 * sizeof(double));
for (int particleInd = 0; particleInd < nlocal; ++particleInd) {
add3(localAvgVel, v([particleInd], localAvgVel);
}
localAvgVel[3] = nlocal;
double globalAvgVel[4];
memset (globalAvgVel, 0, 4 * sizeof (double));
MPI_Allreduce(localAvgVel, globalAvgVel, 4, MPI_DOUBLE, MPI_SUM, world);
scale3(1.0 / globalAvgVel[3], globalAvgVel);
if (comm->me == 0) {
printf ("\%e, \%e, \le\n",
globalAvgVel[0], globalAvgVel[1], globalAvgVell[2]);

In the code above, we use MathExtra routines defined in "math_extra.h”.

There are bunch of math functions to work with arrays of doubles as with math
vectors.

Pointers class (see

In this code we use an instance of Atom class. This object is stored in the
”pointers.h”). This object contains all global information

about the simulation system. Data from Pointers class available to all classes
inherited from it using protected inheritance. Hence when you write you own
class, which is going to use LAMMPS data, don’t forget to inherit from Pointers.
When writing fixes we inherit from class Fix which is inherited from Pointers
so there is no need to inherit from it directly.

The code above computes average velocity for all particles in the simulation.

Yet you have one unused parameter in fix call from the script - [group_name].
This parameter specifies the group of atoms used in the fix. So we should
compute average for all particles in the simulation if group_-name == all, but
it can be any group. The group information is specified by groupbit which is
defined in class Fix:

for (int particleInd = 0; particleInd < nlocal; ++particleInd) {

3

if (atom->mask[particleInd] & groupbit) {
//Do all job here
}

Class Atom encapsulates atoms positions, velocities, forces, etc. User can
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access them using particle index. Note, that particle indexes are usually changed
every timestep because of sorting.

Lets consider another Fix example. We want to have a fix which stores
atoms position from previous time step in your fix. The local atoms indexes
will not be valid on the next iteration. In order to handle this situation there
are several methods which should be implemented:

e double memory_usage - return how much memory fix uses

e void grow_arrays(int) - do reallocation of the per particle arrays in
your fix

e void copy_arrays(int i, int j) - copy i-th per-particle information
to j-th. Used when atoms sorting is performed

e void set_arrays(int i) - sets i-th particle related information to zero

Note, that if your class implements these methods, it must call add calls of
add_callback and delete_callback to constructor and destructor:

FixSavePos: :FixSavePos (LAMMPS *1lmp, int narg, char *xarg) {
//. ..
atom->add_callback(0);

}

FixSavePos:: FixSavePos() {
atom->delete_callback(id, 0);
}

Since we want to store positions of atoms from previous timestep, we need
to add double** x to the header file. Than add allocation code to constructor:

memory->create(this->x, atom->nmax, 3, "FixSavePos:x");. Free mem-
ory at destructor: memory->destroy(x);

Finally, implement mentioned methods:

double FixSavePos: :memory_usage()
{
int nmax = atom->nmax;
double bytes = 0.0;
bytes += nmax * 3 * sizeof (double);
return bytes;

}
void FixSavePos::grow_arrays(int nmax)
{
memory->grow(this->x, nmax, 3, "FixSavePos:x");
}
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void FixSavePos::copy_arrays(int i, int j)

{
memcpy (this->x[j], this->x[i], sizeof(double) * 3);
}
void FixSavePos::set_arrays(int i)
{
memset (this->x[i], 0, sizeof(double) * 3);
}

int FixSavePos::pack_exchange(int i, double *buf)

{

int m = O;

buf [m++] = x[i] [0];
buf [m++] = x[i][1];
buf [m++] = x[i][2];
return m;

3

int FixSavePos::unpack_exchange(int nlocal, double *buf)

{

int m = 0;

x[nlocall [0] = buf [m++];
x[nlocall [1] = buf [m++];
x[nlocall [2] = buf[m++];

return m;

Now, a little bit about memory allocation. We used Memory class which
is just a bunch of template functions for allocating 1D and 2D arrays. So you

need to add include "memory.h” to have access to them.

Finally, if you need to write/read some global information used in your fix
to the restart file, you might do it by setting flag restart_global = 1 in the
constructor and implementing methods void write_restart(FILE *fp) and void

restart(char *buf).
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loop over N timesteps:
ev_set()

fix->initial_integrate()
fix->post_integrate()

nflag = neighbor->decide()

if nflag:
fix->pre_exchange ()
domain->pbc()
domain->reset_box ()
comm->setup ()
neighbor->setup_bins()
comm->exchange ()
comm->borders ()
fix->pre_neighbor ()
neighbor->build ()

else
comm->forward_comm ()

force_clear()
fix->pre_force()

pair->compute ()
bond->compute ()
angle->compute ()
dihedral->compute ()
improper->compute ()
kspace->compute ()

comm->reverse_comm()
fix->post_force()
fix->final_integrate()

fix->end_of_step()

if any output on this step: output->write()

Figure 2: Pseudo-code for the Verlet::run() method.
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