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Characteristic non-Debye behaviors of low-temperature heat capacities of GaP, GaAs,
GaSb, InP, InAs, and InSb, which are manifested above all in form of non-monotonic
behaviors (local maxima) of the respective C p(T )/T 3 curves in the cryogenic region,
are described by means of a refined version of a recently proposed low-to-high-
temperature interpolation formula of non-Debye type. Least-mean-square fittings of
representative C p(T ) data sets available for these materials from several sources show
excellent agreements, from the liquid-helium region up to room temperature. The re-
sults of detailed calculations of the respective material-specific Debye temperature
curves, �D(T ), are represented in graphical form. The strong, non-monotonic varia-
tions of �D(T ) values confirm that it is impossible to provide reasonable numerical
simulations of measured C p(T ) dependences in terms of fixed Debye temperatures.
We show that it is possible to describe in good approximation the complete Debye
temperature curves, from the cryogenic region up to their definitive disappearance
(dropping to 0) in the high temperature region, by a couple of unprecedented algebraic
formulas. The task of constructing physically adequate prolongations of the low-
temperature C p(T ) curves up to melting points was strongly impeded by partly rather
large differences (up to an order of 10 J/(K · mol)) between the high-temperature data
sets presented in different research papers and/or data reviews. Physically plausible
criteria are invoked, which enabled an a priori rejection of a series of obviously un-
realistic high-temperature data sets. Residual uncertainties for GaAs and InAs could
be overcome by re-evaluations of former enthalpy data on the basis of a novel set of
properly specified four-parameter polynomial expressions applying to large regions,
from moderately low temperatures up to melting points. Detailed analytical and nu-
merical descriptions are given for the anharmonicity-related differences of isobaric
vs. isochoric (harmonic) parts of heat capacities. Relevant sets of empirical param-
eters and representative collections of heat capacity and Debye temperature values
for all materials under study are presented in tabulated form. C© 2013 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4818273]

I. INTRODUCTION

The temperature dependences of isobaric heat capacities are playing a key role in thermody-
namics of solids. Detailed numerical information on the individual material-specific C p(T ) values,
from cryogenic up to high temperatures, is the prerequisite for calculating the respective standard
thermodynamic functions like entropies, Sp(T ), and enthalpies, Hp(T ). The experimental basis for
such thermodynamic descriptions is usually given in form of tables and/or graphical representations
of measured (or estimated) C p(T ) data points, which have been presented, for a large variety of
solids, in numerous thermo-physical and -chemical research papers. More or less representative
collections of genuine low-temperature C p(T ) data sets (0 < T <300 K) are available, among other
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things, from various thermo-physical data collections.1–3 Concerning the adjacent high-temperature
region (T ≥ 298.15 K), one may refer to collections of C p(T ) tables that are given for an enormous
variety of materials in several thermo-chemical data reviews.4–6 Unfortunately, the selected C p(T )
values listed within the latter reviews are not representing direct results of genuine heat capacity
measurements. Instead, these C p(T ) values are quantifying the outcomes of various preliminary
fitting and smoothing procedures that are as a rule based on relatively simple analytical expressions
(polynomials) for enthalpies, Hp(T ), and the respective heat capacities, C p(T ) = d Hp(T )/dT . Most
frequently used in this connection is the well-known Maier-Kelley equation,7, 8

C p(T ) = a + bT − cT −2, (1)

where the three empirical parameters, a, b, and c, are as a rule positive. This simple trinomial
equation has been used in particular in a series of thermo-chemical research papers9–17 for rough
simulations of more or less uncertain C p(T > 300K ) data sets available for various III-V materials.
The physical origin of the linear term occurring in this equation is commonly ascribed to lattice
anharmonicity and expansion effects, which are usually the dominating causes of the temperature de-
pendences observable at high temperatures. However, in various cases, the C p(T ) dependences close
to the melting points show a more or less pronounced non-linear (concave) behavior, the simulation
of which requires at least an incorporation of an additional quadratic term into Eq. (1) (see some
exemplifications in Refs. 4 and 18). In contrast to this, in various publications, one is even concerned
with arbitrary omissions of the genuine non-linear term (∝ T −2) in Eq. (1). This corresponds to a
reduction of the Maier-Kelley equation to an exclusively linear dependence, C p(T ) → a + bT . (See
the linear sequences of C p(T ) values given e. g. for GaP in Ref. 4 for GaAs and InAs in Refs. 4 to 6,
19, and 20, for GaSb in Refs. 4, 6, and 21, for InP in Refs. 4 and 5, and for InSb in Refs. 4 and 21.) It is
obvious that such an unfounded linearization of the whole high-temperature C p(T ) curves, beginning
from the commonly considered thermo-chemical reference temperature, Tr ≡ 298.15 K, up to melt-
ing points (Tm), represents an excessive simplification of the true state of affairs. Especially grave is
the circumstance that the differences between estimated C p(Tm) values due to linear approximations
by different authors can reach in certain cases even an order of 10% (e. g. for GaAs and InAs; see
Sec. III).

Fortunately, much more reliable and largely accurate are the thermo-physical C p(T < Tr ) data
sets which are available from numerous research papers published since the middle of the past
century. The comparatively high quality of thermo-physical data sets is due to the circumstance
that the corresponding low-temperature C p(T ) measurements have been usually performed by the
adiabatic calorimetry method, the possible uncertainties of which are as a rule limited to magnitudes
smaller than 0.5%. The comparatively high degree of reliability of most C p(T < Tr ) data sets
is confirmed, among other things, by the usual compatibility (approximate equality) of the data
published for one and the same material by different authors (cf. Sec. III).

On the other hand, just the relatively high quality of many thermo-physical data sets represented
already for decades a permanent challenge for trying to devise adequate analytical models, which
should be capable of providing fine numerical simulations of the C p(T ) data sets in question,
from the cryogenic region up to the room temperature region (at least). The earliest attempts in
this direction are well known from the pioneering papers by Einstein,22 who reduced the phonon
spectrum in roughest approximation to a single lattice oscillator, and by Debye,23 who approximated
the phonon density of states (PDOS) spectra simply by a quadratic function. The well-known
advantage of the latter was its capability of giving a physical plausible explanation of the occurrence
of cubic asymptotes for isochoric (including isobaric) lattice heat capacities in the T → 0 limit,
CV/p(T ) ∝ T 3 (cf. Refs. 24 to 27). However, numerous careful studies of the actual cryogenic
CV/p(T ) dependences, like those performed already years ago for alkali halides,28–30 MgO,31 and
several III-V materials,32 have shown that strong deviations from this asymptotic behavior are
as a rule occurring even within the liquid-helium-hydrogen region. Consequently, it is generally
impossible to describe measured C p(T ) dependences by means of the original Debye function23

involving an unambiguously fixed Debye temperature, �D (whichever its actual value would be).
This general breakdown of Debye’s original model, just within the cryogenic region, is manifested in
particular by the commonly observed non-monotonic (local maximum) behaviors of the associated
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CV/p(T )/T 3 curves for elemental group-IV materials,33–35 for GaN,36, 37 as well as for a variety of
II-VI materials37–44 (see also the analogous, non-monotonic CV/p(T )/T 3 curves which are shown in
Sec. III for the III-V materials under study). In contrast to these numerous experimental observation,
the fictitious CD(T )/T 3 model curves due to Debye’s original CD(T ) function,23–27

CD(T )

T 3
= 3

�3
D

�D/T∫
0

dx
x4ex

(ex − 1)2
, (2)

show a plateau behavior45 in the T → 0 limit, CD(T )/T 3 → (12/5)π4n A R/�3
D (from 0 up to about

�D/12), which is followed by a monotonic decrease, at increasing temperature (i. e. in general
d(CD(T )/T 3)/dT < 0; cf. the insets to the figures presented in Sec. III). Accordingly, among the
hitherto known empirical CV/p(T )/T 3 curves, such a Debye-model-like behavior (2) has never been
observed. An apparently practicable way out of this dilemma, which had been frequently adopted in
the past, consisted in an admission of the inherently contradictory concept of certain T -dependent
(effective) Debye temperatures, �D(T ). The latter have naturally been found, for elemental group-IV
materials,46–50 as well as for a large variety of binary III-V materials,51–62 to change as a rule very
strongly (and mostly in non-monotonic way) with increasing temperature (see also Sec. IV).

In order to overcome this largely unsatisfactory state of affairs of the conventional heat capacity
theory, various authors have suggested more or less simple hybrid models.63–73 These models were
as a rule basing on applications of a Debye-like expression23 exclusively to the heat capacity
contributions of the 3 acoustic (TA and LA) phonon branches, whereas the remaining set of optical
(TO and LO) phonon branches was represented by discrete lattice oscillators of Einstein type22 (only
a single one in several cases).68–70 Hybrid models of this type are, from physical points of view,
somewhat more realistic than their grossly oversimplified predecessors proposed by Einstein22 and
Debye.23 Nevertheless, due to the persistent ignorance of the inherent non-Debye character of the
low-temperature contributions made mainly by the TA phonon peaks, the aforementioned hybrid
models were, again, incapable of accounting for the commonly observed non-monotonic (local
maximum) behaviors of CV/p(T )/T 3 curves in the cryogenic region.

A decisive improvement in the latter respect has been achieved only recently owing to the
unconventional representation of the contributions of both the TA and the LA peaks by separate
Einstein oscillators, in combination with a rigorous cut of the quadratic PDOS spectral components
(of Debye type) just at the first TA peak.43, 50, 74 (Note that the rigorous limitation of any continuous
components of PDOS model functions just by the lowest TA peaks is also in qualitative accordance
with an early idea for constructing physically reasonable hybrid model functions by Baron and
Morrison.)30 Such finer subdivisions of the acoustical parts of PDOS spectral functions imply, of
course, an enlargement of the total set of discrete, model-specific oscillators, the effective positions
and relative weights of which have to be adjusted in the course of subsequent least-mean-square
processes. The corresponding fitting procedures are sometimes not easy to perform, especially in
cases of binary materials with hexagonal structure, as well as for a wealth of ternary materials, owing
to relatively large numbers (≥9) of optical phonon branches. In such cases one is concerned with
the notorious problem of pre-selecting an apparently adequate grouping73, 75 of the numerous optical
branches into a significantly smaller number of compound (effective) Einstein peaks.

In view of such effective oscillator constellation ambiguities, which are inherent to applica-
tions of any multi-oscillator hybrid model to materials with many optical phonon branches, an
alternative fitting model might be welcome whose analytical structure is independent of structural
details of PDOS spectra. The prototype of a duly global analytical model which is, among other
things, completely free from any numerical integration procedure, has been presented in a recent
paper37 in form of a characteristic non-Debye heat capacity interpolation formula (see Eq. (A1), in
Appendix A). It was already shown in Ref. 37, for GaN36 and ZnO,39, 76 that this formula is capable
of providing good numerical simulations of the non-monotonic (local maximum) behaviors of the
corresponding C p(T )/T 3 curves in the cryogenic region.

We have performed here, in the Appendix A, a convenient transformation (parameter re-
definition) of the preceding non-Debye formula,37 in combination with a further refinement of
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its analytical structure. A brief sketch of the whole analytical framework which will actually be used
within the present paper is given in Sec. II. Corresponding least-mean-square fittings of combined
(mutually compatible) sets of low- and high-temperature C p(T ) data, that are available for a series
of cubic III-V materials (GaP, GaAs, GaSb, InP, InAs, and InSb) are performed in Sec. III. For the
sake of comparisons with various former (partial) results51–62 for T -dependent Debye temperature
curves we have performed in Sec. IV the corresponding transformations of the relevant sections of
fitted C p(T ) curves into the conventional effective Debye temperature representation. The strong
non-monotonic T -dependences of the corresponding �D(T ) curves give a clear picture of the pro-
nounced non-Debye character of the heat capacity properties for all materials under study. A detailed
discussion of present results is given in Sec. V.

II. BASIC EQUATIONS OF THE NON-DEBYE HEAT CAPACITY MODEL DESCRIPTION

Within the frame of the harmonic regime, the temperature dependences of isochoric heat capac-
ities per mol, CV h(T ), are generally limited by an upper boundary, CV h(T → ∞), corresponding to
the classical Dulong-Petit value,

CV h(T ) = 3n A RκP (T ) ≤ 3n A R = CV h(∞), (3)

where R is the gas constant, n A is the number of atoms per molecule of the material in question
(i. e. here n A = 2, for the binary III-V materials under study), and 0 ≤ κP (T ) ≤ κP (∞) = 1 is
a material-specific heat capacity shape function. The latter is known to be generally given by an
integral of the form43, 50, 74, 77–82

κP (T ) =
∫

dεgP (ε)

(
ε

2kB T

/
sinh

(
ε

2kB T

))2/∫
dεgP (ε), (4)

where gP (ε ≡ �ω) represents the phonon density of states spectral function.24, 48, 77–79, 83, 84 Fortu-
nately, even without having detailed numerical information on the actual PDOS spectrum, gP (ε), it
is possible to derive from Eq. (4) some general analytical expressions, at least for limiting regions
of high and low temperatures.

Concerning the behavior of κP (T ) at high temperatures, it follows from Thirring’s expansion85

that the κP (T ) curves are tending to unity via close approaches to the respective high-temperature
asymptotes,24, 65, 82, 85

κP (T ) → 1 − μ
(2)
P

12(kB T )2
+ ..., (5)

where μ
(2)
P represents the second moment of the PDOS spectrum. On the other hand, the lim-

iting behavior of κP (T ) in the cryogenic region is determined by the low-energy tail behav-
iors of PDOS spectra. These are known to be generally represented by even-order Taylor se-
ries expansions,29, 45, 47, 50 gP (ε) = γ2ε

2 + γ4ε
4 + γ6ε

6 + ..., the expansion coefficients of which are
throughout positive. This expansion involves, according to Eq. (4) (in combination with Eq. (3)),
low-temperature behaviors of harmonic lattice heat capacities in form of truncated odd-order Taylor
series expansions,29, 31, 32, 45, 47, 86–88

CV h(T ) → c3T 3 + c5T 5 + c7T 7. (6)

The expansion coefficient for the cubic term, c3, is well known to be connected with the T → 0
limiting value,23, 24, 45 �D(0), of the Debye temperature by the relation

c3 = (12/5)π4n A R/(�D(0))3, (7)

(in accordance with Eq. (2)). However, it is continually found within numerical applications to low-
temperature tails of cryogenic CV/p(T ) data sets that the range of validity of the simple trinomial
odd-order power expansion (6) is limited to very narrow intervals,29, 45 0 ≤ T < �D(0)/30. This
means, for many materials, an applicability of Eq. (6) merely to the lower part of the liquid-helium-
hydrogen region.45 At the same time it is usually found that the expansion coefficients for the



082108-5 R. Pässler AIP Advances 3, 082108 (2013)

two higher-order power terms, T 5 and T 7, are positive, c5 > 0 and c7 > 0.29, 45 Consequently, the
respective low-temperature tails of CV/p(T )/T 3 curves,

CV/p(T )/T 3 → c3 + c5T 2+c7T 4, (8)

are monotonically increasing. This basic low-temperature property is, naturally, in striking contrast
to Debye’s theoretical model23 (cf. Eq. (2)). The occurrence of the two positive higher-order terms
is the reason why it is throughout impossible,45 even within the liquid-helium-hydrogen region,
to properly simulate the T -dependences of measured lattice heat capacities by means of Debye’s
original CD(T ) formula,23 at fixed �D → �D(0). (Concerning some contemporary papers, the
authors of which are nevertheless still adhering to the illusionary idea of simulating various C p(T )
data sets by using merely quite accurately calculated Debye functions23 with constant �D values,
see e. g. Refs. 89 and 90).

The temperature dependences of CV h(T ) ∝ κP (T ) functions that are resulting from numerical
calculations via Eq. (4) show automatically correct high- and low-temperature limiting behaviors
(in accordance with (5) and (6), respectively), provided that physically adequate expressions for the
underlying PDOS spectral functions have been used. Such usable gP (ε) functions may be given
either in form of duly detailed graphs (or tables) resulting from material-specific first principles
calculations36, 41, 42, 44 or in form of properly devised multi-oscillator hybrid model functions.43, 50, 74

Any one of these two alternative calculation procedures for CV h(T ) curves, however, requires
more or less comprehensive pieces of information on microscopic (quantum-mechanical) properties
of the material in question. This circumstance raised the question whether, and in which way, it
might be possible to devise a usable analytical framework of purely thermodynamic type, which
does not involve one or the other piece of information on microscopic properties. An exemplary
solution of this problem has recently been presented37 in terms of a certain 7-parameter interpolation
formula for CV h(T ) curves (see Eq. (A1), in the Appendix A). For forthcoming applications it is
useful, however, to perform still a convenient transformation of Eq. (A1) in order to be able to
rewrite this semi-empirical CV h(T ) function (in analogy to (3)) in form of a product (Eq. (A2)) of
the classical Dulong-Petit limiting value, CV h(∞) = 3n A R (3), with a corresponding (normalized)
shape function, κP (T ) (Eq. (A3)). Within the frame of present numerical simulations of the heat
capacity data sets under study (in see Sec. III) we have found, among other things, that marked
refinements of the least-mean-square fittings can be achieved (especially in regions of moderately
low temperatures, where CV h(T ) is of order CV h(∞)/2) when we use a somewhat more general
9-parameter version of Eq. (A3) containing two additional odd-order (∝ T −5 and ∝ T −7) power
terms. Furthermore we can represent (in analogy to Ref. 37) the expansion coefficients, ρn , occurring
in the denominator of Eq. (A3) by products, ρn ≡ T n

s rn(Ts) (n =2 and 4 to 8), of nth-order scaling
temperature power terms, T n

s , with corresponding (dimensionless) expansion coefficients, rn(Ts).
An appropriate choice for such scaling temperatures, Ts , turns out to be generally given by taking
them to be just coincident with those characteristic (material-specific) temperature points, Th , at
which the respective C p(T ) curves are reaching just 50% of the classical Dulong-Petit value, i. e.

Ts → Th, where C p(Th) ≡ 3n A R/2. (9)

Accordingly, we shall use within the present numerical analyses (in Sec. III) a duly general
(9-parameter) κP (T ) expression (derived from (A3)) of the Th-related form

κP (T ) =
1 + c5

c7T 2 + c3
c7T 4

2

√
1 +

8∑
3�=n=2

rn(Th)
(

Th

T

)n
+

(
3n A R
c7T 7

)2
. (10)

A general complication of the analytical apparatus for numerical analyses of measured (isobaric)
heat capacities, C p(T ), is due to the circumstance that the latter are in general higher than the
harmonic parts, CV h(T ), of isochoric heat capacities. The respective differences, C p(T ) − CV h(T ) >

0, are usually very small at temperatures lower than Th (9). On the other hand, in regions above
Th , where the magnitudes of κP (T ) tend to be comparable with unity, the isobaric heat capacities
C p(T ) are generally found to be markedly higher than CV h(T ) (3) due to cumulative effects of
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lattice expansion and lattice anharmonicities.24, 28, 47, 50–52, 57, 82, 91, 92 On the background of sufficiently
comprehensive low- and high-temperature C p(T ) data sets available for germanium and silicon5, 47

we have devised50 an obviously adequate formula for the total difference, C p(T ) − CV h(T ) > 0.
The corresponding analytical expression is of the form50

C p(T ) − CV h(T ) = 3n A R (κP (T ))2 (
A1T + A2T 2 + ...

)
, (11)

where the expansion coefficients An , n = 1, 2,. . . , are representing the cumulative effect of both
non-harmonic heat capacity mechanisms in the high temperature region. Consequently, according to
Eq. (11), for C p(T ) − CV h(T ), in combination with Eq. (3), for CV h(T ), the temperature dependences
of isobaric lattice heat capacities, C p(T ), from absolute zero up to melting points, are represented
by the structurally relatively simple formula43, 50, 74, 82

C p(T ) = 3n A R
[
κP (T ) + (κP (T ))2

(
A1T + A2T 2 + ...

)]
. (12)

An important advantage of this analytical apparatus is due to the circumstance that, owing to the
representation of the heat capacity shape function, κP (T ) (Eq. (4)), by the non-Debye interpolation
formula of algebraic type (Eq. (10)), the subsequent applications of Eq. (12) to numerical fittings of
experimental C p(T ) data sets do not involve numerical integration procedures.

III. HEAT CAPACITY DATA SELECTIONS AND FITTINGS FOR CUBIC III-V MATERIALS

The analytical apparatus displayed in the preceding section will be seen in the following to be
well suited for performing fine numerical fittings, particularly of the thermo-physical C p(T ) data
sets, 0 < T < Tr ≡ 298.15 K, that are available for a variety of cubic III-V materials (GaP, GaAs,
GaSb, InP, InAs, and InSb). In view of the usually relatively small differences (<0.5%) between
the adiabatic calorimetry C p(T ) data presented for the individual materials in different papers, it
turns out to be possible and useful to perform as a rule simultaneous fittings of several, mutually
compatible C p(T < Tr ) data sets. In contrast to this, many ones of the respective thermo-chemical
C p(T > Tr ) data sets, that are available from different research papers and/or data reviews, are
rather inaccurate. Their experimental uncertainties are typically of order 3%, and they may reach
even an order of 10%, in certain cases (see below). Moreover one finds in many cases that the
lower sections (Tr ≤ T < Tm/2) of thermo-chemical data sets are more or less incompatible with
the respective thermo-physical data sets. In view of such significant uncertainties it is useful to take
into consideration some basic criteria that may be invoked for preliminary assessments of probable
compatibility vs. clear incompatibility of different high-temperature data sets, Chigh

p (T ≥ Tr ), with
their more reliable (well-established) low-temperature counterparts, Clow

p (T ≤ Tr ).

A. Basic criteria for high-temperature data selections

Consider first the immediate vicinity of the commonly considered reference point, Tr

= 298.15 K, where the low- and high-temperature C p(T ) data points should naturally tend to
the same magnitude,17

Chigh
p (T → Tr ) = Clow

p (T → Tr ). (13)

In addition to this, in order to assure a smooth match of the respective data sets in the room temperature
region, one has still to require analogous coincidences also with respect to their low-order derivatives,

dnChigh
p (T → Tr )

(dT )n
= dnClow

p (T → Tr )

(dT )n
, n = 1, 2, ... , (14)

(i. e., above all, for their slopes,17 n = 1, and curvatures, n = 2). Unfortunately, as we will see
below, these basic requirements are only seldom fulfilled. The frequent deficiencies in this respect
are obvious in particular for those high-temperature data sets which are given in form of various
linear “approximations”, Chigh(lin.)

p (T ) ≈ a + bT (for numerous examples of such raw data sets see
in particular the thermo-chemical data reviews).4–6 It is frequently found that low-temperature data
sets show a pronounced non-vanishing curvature (convex shape) in the vicinity of the reference point,
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d2Clow
p (T )/(dT )2 < 0 (T ≈ Tr ), whereas such linear high-temperature data sets show no curvature

at all, d2Chigh(lin.)
p (T )/(dT )2 = 0. An actually satisfactory match between such Chigh(lin.)

p (T ) and
Clow

p (T ) data sets in the room temperature region can thus generally not be achieved. On the other
hand, even in view of such notorious misfits in the vicinity of Tr , it can not a priori be excluded that
at least some upper sections of such Chigh(lin.)

p (T ) data sets (e. g. for T > 400 K) are acceptable as
reasonable continuations of Clow

p (T ) data sets in the high temperature region.
With respect to the latter eventuality it is important to consider still another basic criterion for

distinguishing cases of possible admissibility vs. clear inadmissibility of a various Chigh
p (T > Tr )

data sets. To this end we note that the differences C p(T ) − CV h(T ) > 0 (11) use to be monotonically
increasing functions everywhere (from 0 up to melting points), i. e.

d(C p(T ) − CV h(T ))/dT > 0, (15)

(see also Sec. V). This monotonic behavior of the anharmonicity-related differences implies, among
other things, that their magnitudes in the high-temperature region must throughout be larger than at
the reference point,

0 < Clow
p (Tr ) − CV h(Tr ) < Chigh

p (T > Tr ) − CV h(T > Tr ). (16)

A possible conflict of a given Chigh
p (T ) data set with this basic property (16) can be easily

verified provided that the harmonic part, CV h(T ) ∝ κP (T ) (3), is already known (for any T ) from a
preliminary fitting of an associated thermo-physical data sets, Clow

p (T ) (on the basis of Eq. (12), in
combination with (10)).

On the background of the preceding criteria, let us briefly comment on the collections of data
sets that can actually be involved into - or a priori excluded from - the fitting processes for the
individual materials under study.

B. Fittings of compatible low- and high-temperature data sets

For the case of GaP (see Fig. 1), detailed experimental information on the heat capacity at very
low temperatures (2 K to 37 K) was available from the study by Abrahams and Hsu54 in terms of the
corresponding Debye temperatures, �D(T ) (cf. Fig. 1 in Ref. 54). We have retransformed the latter
in the usual way (cf. Sec. IV) into a corresponding cryogenic C p(T ) data set (◦). The continuation
towards room temperature was given by two sets of smoothed Clow

p (T ) data (up to 300 K) from
Refs. 57 (�) and 91 (�). Furthermore we have included into the fitting process the apparently
representative sets of smoothed (nearly coinciding) Chigh

p (T ) values given in Refs. 5 (�), 6 (∗) and
9 (�). From the simultaneous least-mean-square fitting of these six partial C p(T ) data sets (up to
1700 K) we have obtained the parameter values listed in Table I.

Qualitatively more or less different sets of Chigh
p (T ) data are available for the range 800 K to

1500 K from Ref. 10 (♦) and for the range 370 K to 730 K from Ref. 15 (×). At first sight, the
latter Chigh

p (T ) data sets appear to be compatible, too, with the Clow
p (T ) data considered above. A

corresponding alternative fit leads to similar values of parameters (occurring in Eq. (10)), whereas
the value for A1, which follows from such an alternative fit (via Eq. (12)), turns out to be by a factor
of about 3 lower than the preceding one (cf. Table I). Yet, notwithstanding the similarly good quality
of the latter fit in comparison with the preceding one, there are some physical reasons for rejecting
it as an obviously less adequate picture of the high-temperature behavior. (See the corresponding
argumentation in Sec. IV C.)

Clearly incompatible with the low-temperature behavior is the Chigh(lin.)
p (T ) data set given in

Ref. 4 (�) (cf. Fig. 1). These data are not only in strong conflict with the continuity equation (14)
for the first- and second-order derivatives, but even with the basic requirement (16). Actually, we
see from Fig. 1 that the respective Chigh(lin.)

p (T ) data points (�), from Tr up to 1100 K, are located
below the extrapolated CV h(T ) curve, Chigh(lin.)

p (T ) < CV h(T ). Furthermore we see from Fig. 1 that,
in view of an actual difference of Clow

p (Tr ) − CV h(Tr ) = 0.61 J/(mol · K) at the reference point, the

Chigh(lin.)
p (T ) data set due to Ref. 4 (�) is in conflict with the basic requirement (16) even up to
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TABLE I. Adjusted coefficients r2(Th ) to r8(Th ) and c3 to c7 due to Eq. (10) for the harmonic lattice heat capacity shape
function, κP (T ), and associated anharmonicity-related coefficients, A1 and A2, due to Eq. (12). For the commonly considered
thermo-chemical reference temperature, Tr = 298.15 K, we have quoted the corresponding isobaric heat capacities, C p(Tr )
(12), entropies, Sp(Tr ) (17), and enthalpy differences, 	Hp(Tr ) ≡ Hp(Tr ) − Hp(0) (17).

GaP GaAs GaSb InP InAs InSb
T-ranges (K) 1 to 1750 1 to 1500 1 to 950 1 to 900 1 to 1200 1 to 750

A2 (K−2) 2.850 × 10−9 7.170 × 10−8 1.313 × 10−7 − 1.162 × 10−7 1.497 × 10−7

A1 (K−1) 4.927 × 10−5 3.133 × 10−5 4.813 × 10−5 4.496 × 10−5 4.660 × 10−5 5.751 × 10−5

T ( f i xed)
s = Th (K) 115.5 86.0 68.7 93.4 69.3 55.5

r2(Th ) 1.786 1.744 1.727 2.298 2.120 1.940
r4(Th ) 3.013 2.349 2.764 2.672 1.928 2.401
r5(Th ) −2.612 −1.556 −2.113 −2.782 −1.443 −1.865
r6(Th ) 1.112 0.595 0.768 1.172 0.491 0.634
r7(Th ) −0.2156 −0.1123 −0.1284 −0.2170 −0.0748 −0.0967
r8(Th ) 0.01930 0.01242 0.01040 0.01628 0.00547 0.00652
c7 (JK−8mol−1) 6.681 × 10−10 5.947 × 10−9 4.968 × 10−8 8.474 × 10−9 7.428 × 10−8 4.496 × 10−7

c5 (JK−6mol−1) 8.044 × 10−8 5.466 × 10−8 2.199 × 10−7 1.326 × 10−6 3.376 × 10−7 −
c3 (JK−4mol−1) 4.545 × 10−5 9.566 × 10−5 2.051 × 10−4 1.241 × 10−4 2.547 × 10−4 4.613 × 10−3

C p(Tr ) (J/(mol · K)) 44.10 47.03 48.79 45.35 48.24 49.65
Sp(Tr ) (J/(mol · K)) 51.38 64.15 75.79 63.27 75.68 86.85
	Hp(Tr ) (J/mol) 8047 9463 10465 9005 10317 11212
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FIG. 1. Fitting of the Clow
p (T ) data sets available for GaP from Ref. 54 (◦), 57 (�), and 91 (�), and in combination with the

Chigh
p (T ) data sets due to Refs. 5 (�), and 6 (∗), and 9 (�). Shown for comparison are also the more or less strongly deviating

Chigh
p (T ) data sets given in Ref. 4 (�), 10 (♦), and 15 (×). C p(T ) and C p(T )/T 3 curves (———, Eq. (12)); CV h (T ) ∝ κP (T )

curves (– – – –, Eqs. (3) and (10)); asymptotic CV h (T )/T 3 → 0 curve ( · · · · · · · · · , Eq. (8)); Debye’s CD(T )/T 3 curve for
�D = �D(0), as quoted in Table III ( · - · - · - · , Eq. (2)). (Note that the same associations between different curve types and
the underlying analytical expressions apply also to the subsequent Figs. 2 to 6). The deviating high-temperature C p(T ) curve
(– – · – – · – –, Eq. (12)) corresponds to data given in Ref. 10 (♦) and 15 (×).



082108-9 R. Pässler AIP Advances 3, 082108 (2013)

0 200 400 600 800 1000 1200 1400 1600

T (K)

0

10

20

30

40

50

60

C
p

an
d

C
V

h
(J

K
1 m

ol
1 ) 6R

3R

GaAs

Tmax

Th

Tr

Tm

c3

0 10 20 30 40 50 60 70 80 90
T (K)

0

50

100

150

200

250

C
p/

T
3

( μ
J

K
4 m

ol
1 )

FIG. 2. Fitting of the Clow
p (T ) data sets available for GaAs from Ref. 32 (�), 52 (◦), and 58 (�) in combination with the

novel Chigh
p (T ) data set (●) resulting from the present re-assessment (cf. Sec. IV) of original enthalpy data due to Refs. 10

and 20. Shown for comparison are also the more or less strongly deviating Chigh
p (T ) data sets given in Refs. 5 (�), 6 (∗), 10

(♦), 12 (×), 19 (�), 20 (+), and 93 (�). Possible alternative fits of the same Clow
p (T ) data sets in combination with Chigh

p (T )
data due to Ref. 12 (×) and 20 (+) are indicated by double-dashed-dotted curves.

1200 K. Consequently, from physical points of view, the latter data set can be looked upon as a quite
erroneous one.

For GaAs, GaSb, InAs, and InSb, rather detailed and highly informative cryogenic C p(T ) data
sets are available in tabulated form from Ref. 32 (�). Further low-temperature data (up to 273.2 K)
had been given for these materials (including InP) in form of tables of smoothed Clow

p (T ) values
by Piesbergen.51 Yet, in order to draw maximum possible pieces of information from the original
C p(T ) measurements performed by Piesbergen,51 we have re-digitized the individual (unsmoothed)
Debye temperature values, �D(T ), which had been presented in graphical form in Refs. 51 and 52.
The respective (transformed) Clow

p (T ) data points (◦) are shown in the following figures.
Consider now in more detail the case of GaAs (Fig. 2). For the low-temperature region we

have used, above all, the above mentioned Clow
p (T ) data sets available from Refs. 32 (�) and 52

(◦). Furthermore we have included into the fitting process a smoothed Clow
p (T ) data set given in

Ref. 58 (�). Among the large variety of different Chigh
p (T ) data sets shown in Fig. 2, several ones

turned out to be at least roughly compatible with the three Clow
p (T ) data sets in consideration.

This concerns the Chigh(lin.)
p (T ) data given in Ref. 20 (+) and the estimated Chigh

p (T ) data quoted
in Table 5 of Ref. 12 (×). The corresponding approximate fits are represented by the upper and
lower double-dashed-dotted curves, respectively, in Fig. 2. We see, among other things, that the
majority of the Chigh

p (T ) data points given for the range 800 K to 1500 K in Ref. 10 (♦) are ranging
within the middle region between these two alternative curves, and that the residual uncertainty
increases, with increasing T , up to an order of 3 J/(Kmol) (in the vicinity of Tm). In order to reduce
this uncertainty we have re-evaluated some genuine experimental data for enthalpy differences,
	Hp(T ) ≡ Hp(T ) − Hp(Tr ), that are available in graphical form from Refs. 10 and 20. (For a brief
sketch of the corresponding analysis see Sec. IV). We have derived from these enthalpy data a novel
(clearly non-linear) sequence of Chigh

p (T ) data points (●). Fitting, finally, the latter Chigh
p (T ) data in
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FIG. 3. Fitting of the Clow
p (T ) data sets available for GaSb from Ref. 32 (�) and 52 (◦), in combination with the Chigh

p (T )

data sets due to Ref. 4 (�), and 6 (∗). Shown for comparison is also the slightly deviating Chigh
p (T ) data set due to Ref. 21

(+).

combination with the three aforementioned Clow
p (T ) data sets we have obtained the respective set of

parameter values given in Table I.
Let us still assess, in the light of the present fit (solid curve in Fig. 2), some other Chigh

p (T )
data sets which were obtained via direct heat capacity measurements by the differential scanning
calorimetry (DSC) technique. Viewing the unsmoothed C DSC

p (T ) data given for the range of 310 K
to 980 K in Ref. 93 (�) we find a relatively good agreement in the vicinity of 400 K, whereas the
deviations from the fitted (solid) curve reach on order of 2%, in the vicinity of 800 K. Comparable
deviations (up to an order of 3%) are also shown by the C DSC

p (T ) data given for the range of 350 K
to 710 K in Table IV of Ref. 12 (×).

Clearly incompatible with the low-temperature behavior are the Chigh(lin.)
p (T ) data points given

for GaAs in Ref. 19 (�) and in two thermo-chemical data reviews (Refs. 5 (�) and 6 (∗)). These data
sets are not only in clear conflict with the continuity equation (14), for the first- and second-order
derivatives, but even with the basic requirement (16). We see immediately from Fig. 2 that several
ones of these data points are located even below the extrapolated CV h(T ) curve, Chigh(lin.)

p (T ) <

CV h(T ). This is the case for Chigh(lin.)
p (T ) values due to Ref. 6 (∗) and 19 (�) (up to 600 K), and

Ref. 5 (�) (up to 680 K). Furthermore we see from Fig. 2 that, in view of an estimated difference
of Clow

p (Tr ) − CV h(Tr ) = 0.72 J/(mol · K) at the reference point, the Chigh(lin.)
p (T ) data sets due to

Refs. 5 (�), 6 (∗), and 19 (�) are in conflict with the requirement (16) even up to about 800 K.
Consequently, from basic physical points of view, these three Chigh(lin.)

p (T ) data sets can be looked
upon as largely inadequate (erroneous) ones.

For the case of GaSb (Fig. 3), the low-temperature region was well-represented, again, by the
aforementioned Clow

p (T ) data sets available from Refs. 32 (�) and 52 (◦). Furthermore we have

included into the fitting process two Chigh(lin.)
p (T ) data sets given in Refs. 4 (�) and 6 (∗), which

turned out to be (at least roughly) compatible with the low-temperature data in consideration. From
the simultaneous least-mean-square fitting of these four partial C p(T ) data sets (up to 950 K) we
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FIG. 4. Fitting of the low-temperature C p(T ) data sets available for InP from Refs. 52 (◦), 60 (�), and 94 (�) in combination

with the Chigh
p (T ) data set due to Ref. 9 (�) and partial sections (see the text) of the Chigh

p (T ) data sets due to Refs. 5 (�),

6 (∗), and 16 (×). Shown for comparison are also the markedly deviating Chigh
p (T ) data points quoted in Ref. 5 (�) and 10

(♦) for the region 800 K ≤ T ≤ 900 K (i. e. close to the phase transition point).

have obtained the parameter values listed in Table I. The alternative Chigh(lin.)
p (T ) data set given in

Ref. 21 (+) has not been taken into consideration in view of a markedly weaker slope, which leads
to a deviation of about 3 J/(Kmol) (corresponding to about 4%) in the vicinity of Tm . This residual
uncertainty might serve as a challenge for forthcoming heat capacity (or enthalpy) measurements in
this region.

For the case of InP (Fig. 4), in view of the relative scarcity of data available for the liquid-helium-
hydrogen region, we have considered here the Clow

p (T ) data resulting from the aforementioned re-
digitations of the individual �D(T ) points shown in Ref. 52 (◦) and the somewhat more extended
data sets (5 K < T < 300 K) due to Ref. 60 (�) and 94 (�) in combination with the Chigh

p (T ) data
set due to Ref. 9 (�), the lower section (T < 700 K) of the Chigh

p (T ) data set due to Ref. 5 (�),
and the upper sections (T > 600 K) of the Chigh

p (T ) data due to Ref. 6 (∗) and 16 (×). From the
simultaneous least-mean-square fitting of these seven partial C p(T ) data sets (up to 900 K) we have
obtained the parameter values listed in Table I. (Note that the upper end of the calculated C p(T )
curve, at 910 K, corresponds to the first phase transition point for InP.) We see also from Fig. 4
that the upper section (T > 700 K) of the Chigh(lin.)

p (T ) data set due to Ref. 5 (�), similarly as the
few Chigh

p (T ) data points due to Ref. 10 (♦), deviate significantly from the common trend in the
respective region (i. e. from 800 K up to the phase transition point).

For the case of InAs (Fig. 5), the low-temperature region is well represented by the Clow
p (T )

data sets available from Refs. 32 (�), 52 (◦), and 60 (�). In contrast to this, we are concerned
in the high-temperature region with very large discrepancies between different Chigh

p (T ) data sets.
These discrepancies are seen from Fig. 5 to increase up to an unusually large magnitude of about
14%, in the vicinity of the melting point. Consider first the group of lower Chigh(lin.)

p (T ) data points,
which is characterized by C p(Tm) values of about 56 J/(mol · K) (due to Ref. 4 (�)) or about
55 J/(mol · K) (due to Refs. 5 (�), 6 (∗), and 19 (�)). From this group of lower Chigh(lin.)

p (T ) data



082108-12 R. Pässler AIP Advances 3, 082108 (2013)

0 200 400 600 800 1000 1200

T (K)

0

10

20

30

40

50

60

C
p

an
d

C
V

h
(J

K
1 m

ol
1 )

6R

3R

InAs

Tmax

Th

Tr

Tm

c3

0 10 20 30 40 50 60
T (K)

0
100
200
300
400
500
600
700
800

C
p/

T
3

(μ
J

K
4 m

ol
1 )

FIG. 5. Fitting of the Clow
p (T ) data sets available for InAs from Ref. 32 (�), 52 (◦), and 60 (�) in combination with the

novel Chigh
p (T ) data set (●) resulting from the present re-assessment of original enthalpy data due to Ref. 20 (cf. Sec. IV).

Shown for comparison are also the more or less strongly deviating Chigh
p (T ) data sets given in Refs. 4 (�), 5 (�), 6 (∗), 10

(♦), 13 (×), 19 (�), and 20 (+). Possible alternative fits of the same constellation of Clow
p (T ) data sets in combination with

the upper section (800 K < T < 1200 K) of the Chigh
p (T ) data set due to Ref. 20 (+) or with the upper section (400 K < T

< 1200 K) of the Chigh
p (T ) data set due to Ref. 4 (�) are represented by double-dashed-dotted curves.

points, the only one, which we have found to be largely compatible (for T > 400 K, at least) with the
aforementioned Clow

p (T ) data sets, is that one due to Ref. 4 (�). The corresponding (tentative) fit is
indicated by the lower double-dashed-dotted curve. Clearly incompatible with the low-temperature
behavior are the Chigh(lin.)

p (T ) data points given in Refs. 5 (�), 6 (∗), and 19 (�). Apart from the
obvious conflict of these three sequences of Chigh(lin.)

p (T ) data points with the continuity equation
(14) for the first- and second-order derivatives, these data sets are, in view of an estimated difference
of Clow

p (Tr ) − CV h(Tr ) = 0.81 J/(mol · K) at the reference point, in disagreement again with the basic
requirement (16) (from Tr up to an order of 600 K). Consequently, from basic physical points of
view, these three Chigh(lin.)

p (T ) data sets can by no means be considered as possible continuations of
the given Clow

p (T ) data sets into the high-temperature region.

Consider now the group of higher Chigh
p (T ) data points due to Refs. 10 (♦) and 20 (+), which

are tending to an order13 of C p(Tm) ≈ 63 J/(mol · K) near the melting point. (Note that such a C p(Tm)
value13 is obviously the highest one among the counterparts reported in literature for the six III-V
materials under study). We have found that the limited set (T ≥ 800 K) of Chigh

p (T ) data points due
to Ref. 10 (♦) is largely incompatible with the Clow

p (T ) data sets in consideration. In contrast to this,

it was possible to include at least the upper section (T ≥ 800 K) of the Chigh(lin.)
p (T ) data set due to

Ref. 20 (+) into an alternative fitting process without causing a significant deterioration of a separate,
excellent fit of the three Clow

p (T ) data sets. The respective C p(T ) dependence is represented by
the upper double-dash-dotted curve in Fig. 5. A peculiar feature of the latter curve is the qualitative
change of its curvature from convex shape (in the vicinity of Tr ) to a pronounced concave shape
(from about 600 K up to Tm). This snake-like behavior of the upper double-dashed-dotted curve
is in contrast to former fittings13, 17 where, owing to the use of the oversimplified Maier-Kelley
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FIG. 6. Fitting of the Clow
p (T ) data sets available for InSb from Ref. 32 (�) and 52 (◦) in combination with the non-linear

Chigh
p (T ) data sets due to Refs. 5 (�) and 6 (∗) and the Chigh(lin)

p (T ) data set due to Ref. 4 (�). Shown for comparison is

also the Chigh(lin)
p (T ) data set due to Ref. 21 (+).

equation (1), the corresponding C p(T ) curves retained automatically a weak convex (nearly linear)
shape through the whole high-temperature region.

In view of the unusually large divergence (of order 6 J/(mol · K)) between the magnitudes of
fictitious C p(Tm) values estimated via the two preceding alternative fittings, we have re-evaluated
(in analogy to the case of GaAs) the genuine experimental data for enthalpy differences, 	Hp(T )
≡ Hp(T ) − Hp(Tr ), that are available in graphical form from Ref. 20 (cf. Sec. IV). In this way we
have derived a novel set of Chigh

p (T ) data points (●). (Observe the approximate equality of the latter
with the unsmoothed C DSC

p (T ) data points quoted for the range of 350 K to 540 K in Table IV

of Ref. 13 (×)). Fitting these re-evaluated Chigh
p (T ) data points (●) in combination with the three

aforementioned Clow
p (T ) data sets we have obtained the respective set of parameter values quoted

for InAs in Table I.
Finally, for the case of InSb (Fig. 6), the low-temperature region was well represented, again,

by the Clow
p (T ) data sets available from Refs. 32 (�) and 52 (◦). Furthermore we have included into

the fitting process the non-linear Chigh
p (T ) data sets due to Refs. 5 (�) and 6 (∗) and the Chigh(lin)

p (T )
data set due to Ref. 4 (�). From the simultaneous least-mean-square fitting of these five partial
C p(T ) data sets (up to 750 K) we have obtained the parameter values listed in Table I. Shown in Fig.
6 is also the Chigh(lin)

p (T ) data set due to Ref. 21 (+), the lower section of which (T < 400 K) is in
clear disagreement with the continuity conditions (13) and (14).

Henceforth, on the basis of the material-specific parameter sets listed in Table I, it is in principle
possible to pre-calculate, by means of numerical integrations, the magnitudes of thermodynamic
standard functions like entropies and enthalpies,

Sp(T ) =
T∫

0

dT ′C p(T ′)/T ′ and Hp(T ) − Hp(0) =
T∫

0

dT ′C p(T ′), (17)
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for any T , from absolute zero up to the individual melting points, Tm (or the first phase transition
point, in the case of InP). For brevity we have quoted in Table I, at least, the magnitudes of these
two quantities, Sp(Tr ) and 	Hp(Tr ) ≡ Hp(Tr ) − Hp(0), for Tr = 298.15 K, which are of the utmost
interest within thermo-chemistry (see also Sec IV). Furthermore, for the sake of detailed numerical
comparisons of presently estimated (smoothed) C p(T ) values with their more or less different
predecessors, that have been given in tabulated form for low- and/or high temperatures in former
research papers12–16, 32, 51, 58–60, 93 and in data reviews,2–6 we give in Table II representative sets of
discrete (smoothed) C p(T ) values resulting from Eq. (12) (in combination with Eq. (10)) on the
basis of the parameter values quoted in Table I.

IV. DETERMINATION AND ASSESSMENT OF VARIABLE DEBYE TEMPERATURES

Within the frame of the original Debye model,23–27, 65 the generally very complicated ε-
dependences of material-specific spectral functions, gP (ε), in Eq. (4), had been approximated simply
by a quadratic parabola, εD(0 ≤ ε ≤ εD) ∝ ε2, where εD ≡ kB�D represents a fictitious cut-off en-
ergy and �D denotes the respective Debye temperature. According to this (grossly oversimplified)
model, the temperature dependences of isochoric heat capacity CV h(T ) (3), follow readily from
Eq. (4) to adapt the very special (fictitious) form23–27, 52, 65, 90

CD(T ) ≡ 3n A RκD(T ) = 9n A R

(
T

�D

)3
�D/T∫
0

dx
x4ex

(ex − 1)2
. (18)

However, numerous analyses of heat capacity data sets, which were available already for years
for a large variety of group-IV, III-V, and II-VI materials (cf. Ref. 74 and papers there cited), alkali
halides,28, 29 as well as various classes of ternary materials (e. g. chalcopyrites81 or perovskite-type
oxides),95 have continually shown that the original Debye model expression (18) for heat capacities
is throughout incapable (for fixed �D) of providing reasonable numerical simulations of measured
temperature dependences. This general statement applies in particular to the cryogenic region.
Actually, we see from the insets to Figs. 1 to 6 that the empirical behavior of the relevant ratios,33–44

C p(T )/T 3 ≡ ρ(T ), (19)

are showing throughout rather pronounced non-monotonic (local maximum) behaviors.
In contrast to these empirical findings, the theoretical counterpart of Debye type, CD(T )/T 3

≡ ρD(T ) (cf. Eq. (2)), shows a priori a fictitious T → 0 plateau behavior,37 ρD(T → 0) ∼= c3 (from
0 up to temperatures of about �D/12), which is followed by an exclusively monotonic decrease,37

dρD(T )/dT < 0, for any T > �D/12 (see the dashed-dotted curves in the insets to Figs. 1 to 6).

A. Analytical descriptions and calculations of variable Debye temperatures

A frequently chosen way for dealing with this general breakdown of Debye’s original model
consisted for a long time in continual invocations of the largely artificial concept of effective (T -
dependent) Debye temperatures,2, 3, 23–29, 31, 32, 45–62, 65, 88 �D(T ). These quantities are well known to
be defined, implicitly, by an integral representation of the form24–27, 45, 50, 52

C p(T ) = 9n A R

(
T

�D(T )

)3
�D (T )/T∫

0

dx
x4ex

(ex − 1)2
. (20)

(Note that, for the materials under study, some fragmentary sections of such �D(T ) curves had
already been shown in Refs. 51 to 62.)

On the basis of equation (20) one can perform point-by-point transformations of individual
isobaric heat capacity values, C p(T ), into the respective Debye temperature values, �D(T ). Corre-
sponding representative results are shown for GaP, GaAs, and GaSb in Fig. 7 and for InP, InAs, and
InSb in Fig. 8. From these figures we see, among other things, that the cryogenic sections of the �D(T )
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TABLE II. Collection of smoothed isobaric heat capacity values, Cp (J/(mol · K)), due to Eq. (12) (in combination with
Eq. (10)), and the corresponding effective Debye temperatures, �D (K), due to Eq. (20).

GaP GaAs GaSb InP InAs InSb
T (K) Cp �D Cp �D Cp �D Cp �D Cp �D Cp �D

0 0.0 440.6 0.0 343.8 0.0 266.6 0.0 315.3 0.0 248.1 0.0 203.5
2 0.000366 439.5 0.000768 343.4 0.001654 265.9 0.001036 310.8 0.002057 247.3 0.003744 202.5
4 0.00300 436.0 0.00627 341.1 0.01409 260.4 0.00941 297.9 0.01775 241.1 0.03572 191.0
6 0.01062 429.3 0.02260 333.7 0.05747 244.5 0.03852 279.3 0.07474 224.0 0.18428 165.8
8 0.02713 418.6 0.06121 319.2 0.18344 221.4 0.1136 259.7 0.2458 200.8 0.6429 145.7
10 0.05895 404.0 0.14484 299.4 0.47319 201.8 0.2725 242.5 0.6323 183.2 1.4875 137.7
12 0.11642 386.4 0.3064 279.9 0.9723 190.4 0.5614 228.7 1.2629 174.5 2.6150 136.5
14 0.2145 367.7 0.5741 264.9 1.6636 185.6 1.0251 218.3 2.0928 171.8 3.9095 138.4
16 0.3708 350.2 0.9580 255.2 2.5047 184.7 1.6776 211.5 3.0664 172.2 5.2563 142.0
18 0.6002 335.5 1.4531 249.7 3.4483 186.0 2.4782 208.5 4.1235 174.5 6.565 146.8
20 0.9085 324.7 2.0443 247.3 4.4474 188.7 3.3599 208.5 5.2044 178.2 7.796 152.3

25 1.9684 313.2 3.8005 249.6 6.598 199.3 5.672 215.6 7.773 190.6 10.572 167.1
30 3.2820 315.4 5.710 258.1 9.320 212.0 7.955 226.6 10.068 204.9 13.123 180.9
35 4.721 323.2 7.616 269.1 11.545 224.5 10.003 239.7 12.191 218.8 15.589 192.8
40 6.207 333.4 9.484 280.5 13.691 236.0 11.742 254.6 14.224 231.4 18.000 202.7
45 7.585 344.6 11.318 291.4 15.787 246.1 13.244 270.1 16.201 242.5 20.341 210.8
50 9.128 356.4 13.123 301.4 17.836 254.7 14.606 285.3 18.127 252.2 22.589 217.4
55 10.522 368.3 14.899 310.5 19.832 262.0 15.894 299.7 19.994 260.6 24.722 222.8
60 11.872 379.9 16.642 318.5 21.763 268.1 17.144 313.0 21.794 267.8 26.726 227.1
65 13.183 391.0 18.346 325.5 23.617 273.2 18.372 325.2 23.519 274.0 28.592 230.6
70 14.463 401.5 20.004 331.6 25.385 277.3 19.581 336.3 25.161 279.4 30.317 233.3
75 15.716 411.2 21.609 336.9 27.058 280.7 20.773 346.3 26.716 284.0 31.903 235.5
80 16.945 420.2 23.154 341.4 28.634 283.4 21.944 355.3 28.183 287.9 33.354 237.2
85 18.149 428.5 24.635 345.3 30.109 285.5 23.092 363.5 29.560 291.3 34.679 238.5
90 19.329 436.0 26.050 348.6 31.485 287.2 24.212 370.8 30.849 294.1 35.885 239.4
95 20.485 442.9 27.395 351.4 32.764 288.4 25.301 377.4 32.053 296.6 36.983 240.1
100 21.613 449.1 28.669 353.7 33.950 289.3 26.357 383.3 33.175 298.6 37.981 240.5

110 23.786 459.7 31.010 357.3 36.060 290.3 28.363 393.4 35.191 301.8 39.716 240.8
120 25.836 468.2 33.083 359.7 37.860 290.4 30.218 401.4 36.932 304.0 41.156 240.3
130 27.755 474.9 34.907 361.2 39.392 289.8 31.921 407.9 38.436 305.4 42.359 239.3
140 29.539 480.1 36.509 361.9 40.700 288.7 33.474 413.1 39.736 306.1 43.370 237.8
150 31.187 484.0 37.912 362.1 41.818 287.2 34.885 417.1 40.864 206.2 44.228 235.8
160 32.703 486.9 30.142 361.8 42.781 285.2 36.162 420.3 41.845 305.7 44.961 233.3
170 34.093 488.9 40.223 361.1 43.612 282.8 37.318 422.7 42.704 304.8 45.594 230.3
180 35.362 490.2 41.173 360.1 44.336 280.0 38.362 424.5 43.458 303.5 46.144 226.7
190 36.520 490.9 42.012 358.8 44.969 276.8 39.306 425.7 44.125 301.6 46.626 222.5
200 37.575 491.0 42.755 357.2 45.527 273.1 40.159 426.4 44.716 299.4 47.053 217.6
210 38.537 490.7 43.415 355.3 46.022 269.0 40.931 426.8 45.244 296.6 47.434 212.0
220 39.412 490.0 44.005 353.2 46.463 264.3 41.630 426.7 45.781 293.4 47.777 205.5
230 40.210 488.9 44.533 360.8 46.860 259.0 42.266 426.3 46.146 289.6 48.087 197.9
240 40.938 487.5 45.008 348.1 47.218 253.1 42.843 425.6 46.533 285.2 48.370 189.2
250 41.603 485.9 45.438 345.1 47.544 246.4 43.370 424.7 46.887 280.3 48.630 179.1
260 42.211 483.9 45.827 341.8 47.842 238.9 43.850 423.4 47.211 274.6 48.870 167.2
270 42.768 481.7 46.182 338.2 48.167 230.4 44.291 421.8 47.509 268.2 49.094 153.1
280 43.279 479.3 46.506 334.2 48.371 220.7 44.695 420.0 47.784 261.0 49.303 135.9
290 43.748 476.6 46.804 329.8 48.607 209.6 45.066 418.0 48.040 252.9 49.500 (114)
300 44.181 473.7 47.078 325.0 48.827 (197) 45.408 415.7 48.297 243.6 49.688 (85)

350 45.90 455.5 48.184 292.7 49.76 (78) 46.77 400.1 49.28 (233) 50.51 –
400 47.11 430.4 49.00 (240) 50.52 – 47.74 377.1 50.08 (173) 51.22
450 48.00 396.4 49.65 (139) 51.19 48.45 344.6 50.77 – 51.88
500 48.69 349.9 50.20 – 51.82 49.01 298.9 51.39 52.52
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TABLE II. (Continued.)

GaP GaAs GaSb InP InAs InSb
T (K) Cp �D Cp �D Cp �D Cp �D Cp �D Cp �D

550 49.23 (284) 50.69 52.43 49.45 (231) 52.00 53.16
600 49.68 (174) 51.14 53.03 49.82 (100) 52.57 53.81
650 50.06 – 51.58 53.65 50.13 – 53.16 54.48
700 50.39 52.00 54.28 50.40 53.75 55.18
750 50.68 52.43 54.93 50.64 54.35 55.91
800 50.95 52.85 55.60 50.86 54.98
850 51.19 53.29 56.30 51.07 55.62
900 51.42 53.73 57.03 51.25 56.28
950 51.63 54.18 57.78 56.96
1000 51.84 54.64 57.67
1050 53.03 55.11 58.41
1100 52.22 55.60 59.17
1150 52.40 56.11 59.96
1200 52.58 56.63 60.77
1250 52.75 57.16
1300 52.93 57.71
1350 53.09 58.28
1400 53.26 58.86

1450 43.43 59.46
1500 53.59 60.08
1550 53.75
1600 53.91
1650 54.07
1700 54.23

curves are rapidly falling down from their T → 0 limiting levels,45 �D(0) = ((12/5)π4n A R/c3)
1/3

(cf. Eq. (7)), to local minima, �D(Tmin). The latter are found to be located at certain, material-
specific Tmin-positions (indicated by vertical bars, in Figs. 7 and 8), which are nearly coincident (cf.
Table III) with the positions, Tmax, of the maxima, ρ(Tmax), of the respective ρ(T ) curves (19) (cf.
the insets to Figs. 1 to 6). Thus we are obviously concerned with a close correlation between the
maxima of ρ(T ) curves (19), on the one hand, and the minima of the respective �D(T ) curves (due
to Eq. (20)), on the other hand.

This correlation can be described in explicit form when we take into consideration that the
integrand in (20) is a rapidly (exponentially) decreasing function of the integration variable, x .
Consequently, when one considers regions of sufficiently low temperatures,23, 24, 27, 45, 65

T < �D(T )/12, (21)

one can extend in fair approximation (within an accuracy better than 1%) the range of integration to
infinity, so that the integral in (20) adopts the limiting value (2π )4/15.23, 24, 43, 45 Consequently, the
general relationship (20) between C p(T ) and �D(T ) reduces to the simple (algebraic) equation43, 45

C p(T ) ∼= (12/5) π4n A R (T/�D(T ))3 , (22)

i. e. conversely

�D(T ) ∼= (
(12/5)π4n A R/C p(T )

)1/3 × T = �D(0)
(
c3/C p(T )

)1/3 × T, (23)

(in accordance with Eq. (7)). Taking further into account that, in the cryogenic region (for T < 30 K,
at least), the anharmonicity-related differences, C p(T ) − CV h(T ) (11), are throughout by factors of
order 10−4 to 10−3 smaller than the respective harmonic parts, CV h(T ) (3), one can substitute C p(T )
(in Eq. (23)) by CV h(T ). Thus, according to Eq. (3) and (10), one can rewrite the first version of
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FIG. 7. Effective Debye temperatures resulting (via Eq. (20)) from Clow
p (T ) and Chigh

p (T ) data available from various

research papers and/or data reviews for GaP (�low
D (T ) from Refs. 54 (◦), 57 (�), and 91 (�), and �

high
D (T ) from Refs. 5

(�), 6 (∗), 9 (�), and 15 (×)), for GaAs (�low
D (T ) from Refs. 32 (�), 52 (◦), and 58 (�), and �

high
D (T ) from Refs. 5 (�),

6 (∗), 12 (×), 19 (�), 20 (+), and 93 (�)), and GaSb (�low
D (T )from Refs. 32 (�) and 52 (◦) and �

high
D (T ) from Refs. 6 (∗),

19 (�), and 20 (+)). The continuous �D(T ) curves (———) are resulting (via Eq. (20)) from the respective isobaric heat
capacity curves, C p(T ) (as shown in Figs. 1–3, respectively). Shown are also limited sections of the “true” (harmonic) Debye
temperatures, �Dh (T ) (– – – –, due to Eq. (B1), and approximate �D(T ) curves ( · · · · · · · · · ), which are resulting from a
couple of complementary algebraic formulas (i. e. from Eq. (24), for 0 < T < Tmin, or from Eq. (26), for Tmin < T ≤ T f ).

Eq. (23) for �D(T ) also in the explicit form

�D(T ) ∼=

⎛
⎜⎜⎜⎜⎝

4π4

5
2

√
1 +

8∑
3�=n=2

rn(Th)
(

Th

T

)n
+

(
3n A R
c7T 7

)2

1 + c5
c7T 2 + c3

c7T 4

⎞
⎟⎟⎟⎟⎠

1
3

× T . (24)

The latter formula can be used as a welcome alternative (with respect to Eq. (20)) for calculating
the decreasing sections of �D(T ) dependences in the cryogenic regions (see the dotted curve sections,
from 0 to Tmin, in Figs. 7 and 8).

A general consequence of the very definition (Eq. (20)) of effective Debye temperatures is the
fact that the calculated �D(T ) values are dropping to zero at those positions, T f , where the individual
C p(T ) curves are crossing just the classical Delong-Petit level, i. e.

�D(T f ) = 0 for C p(T f ) = 3n A R, (25)

(cf. the actual positions, T f , of �D → 0 drops of the solid �D(T ) curves, in Figs. 7 and 8, with
the positions of crossing points (25) of the C p(T ) curves, in Figs. 1 to 6). Within a detailed study
of the analytical behavior of the integral (20) for the whole residual intervals, extending from the
vicinity of Tmin positions up to the T f points (i. e. 11 > �D(T )/T ≥ 0), we succeeded here to derive
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FIG. 8. Effective Debye temperatures resulting (via Eq. (20)) from Clow
p (T ) and Chigh

p (T ) data available from various

research papers and/or data reviews for InP (�low
D (T ) from Refs. 52 (◦), 60 (�), and 94 (�), and �

high
D (T ) from Refs. 5 (�),

6 (∗), 9 (�), and 16 (×)), for InAs (�low
D (T ) from Refs. 32 (�), 52 (◦), and 60 (�), and �

high
D (T ) from Refs. 4 (�), 5 (�),

6 (∗), 13 (×), 19 (�), 20 (+)), and for InSb (�low
D (T ) from Refs. 32 (�) and 52 (◦), and �

high
D (T ) from Refs. 4 (�), 5 (�),

and 6 (∗)). (Note that the associations between different curve types and the underlying analytical expressions are the same
as in Fig. 7).

a largely adequate (unprecedented) algebraic expression of the relatively simple form

�D(T ) ∼= 2

√√√√−35 + 5 · 2

√
49 + 56

(
3n A R

C p(T )
− 1

)
× T . (26)

Note that the deviations of approximate �D(T ) values (due to Eq. (26)) from the exact ones (due
to Eq. (20)) tend to a maximum of about 1.5% at ratios of �D(T )/T ≈ 8 (where the �D(T ) curves
are rapidly increasing; cf. Figs. 7 and 8). Furthermore we have found that for 4 > �D(T )/T ≥ 0,
i. e. from �D max regions up to the T f points, the corresponding deviations are even smaller than
0.3% (tending to 0 in the T → T f limit). These findings show the potential usefulness of Eq. (26)
for various practical applications. Furthermore, the �D(T ) curves due to Eq. (26) can be easily seen
to tend (for 1 > �D(T )/T ≥ 0) to the limiting (T → T f ) asymptotes

�D(T ) → 2

√
20

(
3n A R

C p(T )
− 1

)
× T . (27)

We see that the individual �D(T ) curves, for all materials under study, are ending somewhere
between 300 K and 630 K, i. e. at temperatures significantly below the melting points of these
materials. This means that the very concept of effective Debye temperatures, �D(T ) (Eq. (20)),
is largely inconvenient within the frame thermo-chemistry, which is aiming mainly to continuous
analytical and numerical descriptions of thermal properties (up to melting points). On the other hand,
this concept appears to be of permanent interest within the field of thermo-physics, because thermal
properties in low-temperature regions are still often quantified in terms of Debye temperatures. In
view of the hitherto existing lacks of comprehensive knowledge on �D(T ) dependences, particularly

h-xin
高亮
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TABLE III. Quantities manifesting the close correlation (Eq. (28) and (29)) between the general increase of ρ(T )
≡ C p(T )/T 3 curves (Eq. (19); cf. the insets to Figs. 1 to 6)) from relatively low T → 0 levels, ρ(0) = c3, up to their
local maxima, ρmax ≡ ρ(Tmax), on the one hand, and the corresponding decrease of Debye temperature curves, �D(T )
(Eq. (23) or (24); cf. Figs. 6 and 7), from T → 0 levels, �D(0), to respective local minima, �D min ≡ �D(Tmin), on the other
hand. A comparison of the magnitudes of various significant ratios between the quantities �D(0), �D(Tmin), TD max, �D max,
T f , and �Dh (∞) shows similarities of the shapes of the individual �D(T ) curves.

Material GaP GaAs GaSb InP InAs InSb

Tmax (K) 25.7 20.7 15.3 18.4 14.2 11.3
ρ(Tmax) (μJ · K−4mol−1) 126.1 255.8 613.0 425.4 763.1 1520.9
ρ(0) = c3 (μJ · K−4mol−1) 45.45 95.54 205.05 124.07 254.74 461.25
ρ(Tmax)/ρ(0) 2.77 2.68 2.98 3.43 3.00 3.30
(ρ(0)/ρ(Tmax))1/3 0.712 0.720 0.695 0.663 0.694 0.672

Tmin (K) 26.2 21.2 15.7 18.9 14.6 11.5
�D(Tmin) (K) 312.8 247.0 184.6 208.1 171.6 136.4
�D(Tmin)/Tmin 11.9 11.6 11.8 11.0 11.8 11.9
�D(0) (K) 440.6 343.8 266.6 315.3 248.1 203.5
�D(Tmin)/�D(0) 0.710 0.718 0.692 0.660 0.692 0.670

�Dh (∞) (K) 522 376 308 448 315 251
�D max (K) 491.0 362.1 290.5 426.8 306.2 240.8
TD max (K) 197.8 148.2 116.3 213.8 146.6 108.2
�D max/TD max 2.48 2.44 2.45 2.00 2.09 2.23
�D max/�D(0) 1.114 1.053 1.090 1.354 1.235 1.183
�D max/�D(Tmin) 1.570 1.466 1.574 2.050 1.785 1.765
�Dh (∞)/�D max 1.063 1.038 1.060 1.050 1.028 1.042
T f (K) 627 471 358 610 386 311
T f /�D max 1.28 1.30 1.23 1.43 1.26 1.29

with respect to very low temperatures (0 < T < Tmin) as well as for the relevant sections of the
high-temperature region (Tr < T ≤ T f ), we have presented here the complete �D(T ) curves (in
Figs. 7 and 8), including a representative collection of numerical values (in Table II), for the six
III-V materials under study.

B. Correlation of cryogenic non-Debye behaviors of Debye
temperatures vs. heat capacities

Another useful relationship correlating the decreasing sections (0 < T < Tmin) of �D(T ) curves
(in Figs. 7 and 8), on the one hand, with the respective increasing sections (0 < T < Tmax) of ρ(T )
curves (as shown in the insets to Figs. 1 to 6), on the other hand, is readily obtained by rewriting the
second version of Eq. (23) in the equivalent form43, 45

�D(T )

�D(0)
∼= T

(
c3

C p(T )

) 1
3

=
(

c3

ρ(T )

) 1
3

=
(

ρ(0)

ρ(T )

) 1
3

. (28)

Here we have taken into consideration that, according to Eq. (8), the parameter c3 corresponds
just to the T → 0 limiting value, ρ(0), of the function ρ(T ) ≡ C p(T )/T 3 → CV h(T )/T 3 (19).
From Eq. (28) we infer, above all, that the cryogenic Debye temperature curve, �D(T ), can be
generally expected to adopt its minimum, �D(Tmin), at the same position43, 49 on temperature scale,
T �

min
∼= T ρ

max, at which the function ρ(T ) (19) reaches its maximum, ρ(Tmax). At the same time, due
to this approximate coincidence of the minima vs. maxima positions of the two correlated functions,
there follows from (28) the special relation43

�D(Tmin)

�D(0)
∼=

(
ρ(0)

ρ(Tmax)

) 1
3

. (29)
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The latter indicates that the magnitudes of the total drops of �D(T ) curves, from their T → 0
levels, �D(0), to their minima, �D(Tmin), are unambiguously determined by the magnitudes of the
total enhancements of the ρ(T ) curves (19), from their T → 0 levels, ρ(0) = c3, to the respective
maxima, ρ(Tmax).

Of course, the preceding algebraic formulas for the liquid-helium-hydrogen region (i. e.
Eq. (28) and (29), as well as Eq. (22) to (24)), are really valid only under the condition (21).
This means that, within the whole cryogenic intervals in consideration, 0 < T < Tmin, the continu-
ously decreasing ratios, �D(T )/T , must be permanently larger than about 12. Accidentally, in the
vicinity of the Tmin points, these ratios are still retaining magnitudes of �D(Tmin)/Tmin ≈ 11 to 12
(cf. Table III), which are nearly equal to the critical value (lower boundary) required by condition
(21). Consequently, this condition is reasonably fulfilled throughout the relevant cryogenic intervals,
from 0 to the vicinities of the individual Tmin points. This causes the obviously excellent agreement
of the estimated ratios (ρ(0)/ρ(Tmax))1/3 and �D(Tmin)/�D(0) with Eq. (29) (cf. Table III). At the
same time we would like to underscore that these approximate equations are not applicable43 to
temperatures markedly higher than Tmin. Thus, for continuations of the �D(T ) curves beyond the
individual Tmin points, we have to use either the original (integral) representation (Eq. (20)) or the
novel approximate expression (26).

C. Large deviations and rejection of erroneous high-temperature data

Comparing the individual sets of �low
D (T ) and �

high
D (T ) points (in Figs 7 and 8), which were

derived from the respective Clow
p (T ) and Chigh

p (T ) data points (shown in Figs. 1 to 6), we find as
a rule good agreements in the low-temperature region (from 0 up to about 250 K, at least). In
contrast to this, we are concerned partly with enormous deviations of �

high
D (T ) points from the

smooth �D(T ) curves in the high temperature region. These deviations are at least partly due to
the circumstance that even small uncertainties and/or moderate systematic errors of given Chigh

p (T )
data are involving, according to Eq. (20) (or Eq. (26)), rather large deviations of the respective
�

high
D (T ) values, particularly in those regions where the �D(T ) curves are rapidly dropping to

zero. Yet, just this apparently troublesome “blowing-up” effect for experimental uncertainties via
the Chigh

p (T ) to �
high
D (T ) transformations has the significant advantage of showing varieties of

sporadic and/or systematic errors in a much more pronounced form (in Figs. 7 and 8) than within
the original Chigh

p (T ) representation (in Figs. 1 to 6). As typical examples consider the sequences
of the relatively low Chigh(lin.)

p (T ) data points for GaAs due to Ref. 5 (�), 6 (∗), and 19 (�). We
have already disqualified these three data sets in Sec. III in view of their clear disagreement with the
(somewhat sophisticated) condition (16), whose actual application assumed, naturally, a preliminary
determination of the harmonic part, CV h(T ), via a preceding fit of Clow

p (T ) data sets. In contrast to

this we see now immediately from the graphical representations of the respective �
high
D (T ) points

in Fig. 7 that these three sequences deviate in rather drastic way from the overall behavior of the
�D(T ) dependence for GaAs. In particular we see that these three sequences tend to an obviously
unrealistic (second maximum) behavior in the vicinity of 500 K, whereas the physically realistic
�D(T ) curve dropped already to 0 at about 470 K. Furthermore we see that the fictitious maximum
values, of about �D max ≈ 400 K to 430 K, are even exceeding the well established T → ∞ limiting
value of �Dh(∞) = 376 K. This is impossible from physical points of view (cf. the detailed analysis
of the �low

D (T ) data sets in Appendix B).
Analogously we see from Fig. 8 that three sequences of �

high
D (T ) points for InAs, which are

representing the Chigh(lin.)
p (T ) data sets due to the same sources as the aforementioned ones for

GaAs (namely Refs. 5 (�), 6 (∗), and 19 (�)), show the same type of characteristic deficiencies.
These sequences show, again, an obviously unrealistic (second maximum) behavior in the vicinity
of 400 K, whereas the physically realistic �D(T ) curve dropped to 0 just in this region. In this way,
the �

high
D (T ) representations provide striking additional arguments for definitive rejections of the

Chigh(lin.)
p (T ) data sets due to Refs. 5 (�), 6 (∗), and 19 (�), both for GaAs and InAs.

Finally we are concerned also with a largely atypical behavior (namely an unusually weak de-
crease) of the sequence of �D(T ) values due to Ref. 15 (×) for GaP (see the double-dashed-dotted
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curve in Fig. 7). Moreover we see from Fig. 1 that the fictitious double-dashed-dotted curve, which is
due to a tentative fit of the Chigh

p (T ) data points given in Ref. 15 (×) in combination with those avail-
able for T ≥ 800 K from Ref. 10 (♦), crosses the classical Dulong-Petit level at T f ≈ 860 K.
This would mean, in view of a given maximum value of �D max = 491 K (cf. Fig. 7 and
Table III), an apparent T f /�D max ratio of 1.75. The latter value is by about 35% higher than the typical
magnitude of these ratios for the III-V materials under study (cf. Table III). The Chigh

p (T ) data due to
Ref. 10 (♦) and 15 (×) would thus imply a largely atypical shape of the whole �

high
D (T ) curve

section. These indications might be sufficient for considering also the latter Chigh
p (T ) data sets as

physically rather unrealistic ones. A definitive conclusion in this respect, however, can not be made
unless more accurate Chigh

p (T ) data become available for GaP.

V. DISCUSSION

We have established in this paper a refined version (10) of a recently proposed non-Debye heat
capacity formula37 which, in combination with the duly general formula (11) for the anharmonicity-
related differences of isobaric vs. isochoric (harmonic) heat capacities, turned out to be capable of
providing fine numerical descriptions of comprehensive C p(T ) data sets for several III-V materials,
from the cryogenic region up to melting points. An important feature of this representative analytical
framework (displayed Sec. II) is due to its readiness for applications to materials with largely
different phonon spectra. Of particular value is its general capability of describing in adequate way
the commonly observable non-Debye behaviors of C p(T ) data in the cryogenic region. This has
been clearly shown here by the fine numerical simulations of the non-monotonic (local maximum)
behaviors of combinations of several compatible ρ(T ) = C p(T )/T 3 data sets, the most informative
components of which are due to the �D(T ) data points given for GaP in Ref. 54 (cf. Fig. 1) and the
very detailed C p(T ) data sets given for GaAs, GaSb, InAs, and InSb in Ref. 32 (cf. Figs. 2, 3, 5, and
6, respectively) or for InP in Ref. 94 (cf. Fig. 4).

Approximate simulations of comparable C p(T )/T 3 data sets have been performed in last
years also as inherent parts of studies of isotopic effects in several group-IV33–35 and II-VI36, 39–42

materials. The novel non-Debye heat capacity formula (10) might thus be useful in future also as an
effective analytical tool for fine numerical simulations of varieties of C p(T )/T 3 data sets available
for isotopically modified samples.

A. Important role of conveniently chosen scaling temperatures

A practicable way for ready applications of the present analytical framework to a series of
materials with largely different extensions of PDOS spectra (cf. the individual εDh(∞) values quoted
in Table V) was found to be given via the introduction of conveniently chosen scaling temperatures
(in particular by Ts = Th , in Eq. (10)). In general one can state that that a substitution of the preceding
set of expansion coefficients, ρn (occurring in the denominator of Eq. (A3)), by products of certain
T n

s power terms multiplied with dimensionless, Ts-related coefficients, rn(Ts), has the advantage
that one has a good chance to be concerned in numerical applications as a rule with only moderate,
material-specific changes of magnitudes of the respective expansion coefficients, rn(Ts) (n = 2,
and 4 to 8), provided that the Ts values adopted for different materials are roughly proportional
to the actual extensions (e. g. upper boundaries, ≈ εDh(∞)) of the respective PDOS spectra. This
global requirement would be fulfilled by choosing Ts to be equal, e. g., to the T → ∞ limits of the
Debye temperature, �Dh(∞) (for the harmonic lattice regime; cf. Appendix B). However, owing to
the relatively high magnitudes of �Dh(∞) values (see Table V), the magnitudes of the respective
expansion coefficients, rn(Ts → �Dh(∞)), turned out to decrease very rapidly (even by orders of
magnitude) with increasing n. Fortunately, such rapid drops of rn(Ts) values with increasing order,
n = 2 to 8, could be generally be avoided by choosing the scaling temperatures, Ts , to be coincident
with those characteristic points on T -scale, Th (Eq. (9)), where the measured C p(T ) values are
adopting a magnitude of just 50% of the classical Dulong-Petit value, i. e. C p(Th) = CV h(∞)/2



082108-22 R. Pässler AIP Advances 3, 082108 (2013)

(cf. Eq. (9) and see Figs. 1 to 6). Due to this particular choice, Ts = Th (as indicated by bold
numbers in Table I), the orders of magnitude of several expansion coefficients follow automatically
to be comparable with unity, rn(Th) ≈ 100 (for n = 2 and 4 to 6, at least). Moreover, it is an
immediate consequence of this particular choice (as briefly discussed in the Appendix A) that
the sum of the whole set of the 6 expansion coefficients should be approximately equal to 3 (cf.
Eq. (A4)). Indeed, we see from the parameter values listed in Table I that marked deviations (up
to an order of 5%) of the sums (A4) from the ideal value (of 3) are encountered only for GaP
and InP, whereas the deviations for GaAs, GaSb, InAs, and InSb are even limited to an order
of 1%.

Another characteristic feature of the fitted sets of rn(Th) values consists in their alternating signs
for the orders n = 4 to 8. Actually, we see from Table I that, for all materials under study, the
even-order coefficients are positive, whereas the odd-order coefficients are throughout negative. It
is this alternating character of the sequences of the five subsequent expansion coefficients (n = 4 to
8) which is the main cause of significant refinements of the numerical simulations of given C p(T )
data sets by means of the present non-Debye interpolation formula (Eq. (10)), in comparison with
somewhat rougher fittings by the original version37 (i. e. Eq. (A1) or (A3)).

Furthermore we see from Table I that the magnitudes of the expansion coefficients, rn(Th), of
the individual orders (n = 2 and 4 to 8), are changing only moderately (by factors not exceeding
an order of 3) from one material to the other. This is a highly convenient property which enables
us, e. g., in the frame of sequential simulations of C p(T ) data sets for several materials, to employ
a preceding set of fitted rn(Th) values as usable starting values for subsequent least-mean-square
processes (provided, of course, that adequate values for the material-specific Th positions (9) have
been adopted in Eq. (10)).

B. Efficient version of least-mean-square fitting processes

We see from Table I that, in contrast to the order-of-magnitude equalities of the rn(Th) coeffi-
cients, the magnitudes of the characteristic low-temperature expansion coefficients, c3, c5, and c7,
are changing rather strongly (even in their orders of magnitude) from one material to the other. Ap-
proximate (starting) values for c3 can be readily estimated via Eq. (7) on the basis of limiting �D(0)
values (the magnitudes of which use to be known for numerous materials). Reasonable starting
values for the other two low-temperature parameters, c5 and c7, can be estimated, e. g., by means of
conventional analysis procedures29, 31, 45 for cryogenic C p(T ) data sets. However, such provisional
c5 and c7 values use to undergo strong changes during the subsequent fitting processes for the whole
C p(T ) curves. In order to come in effective way to an unambiguous, final constellation of adjusted
values for the complete parameter set it turned out to be mandatory to endow the low-temperature
data with significantly higher weights74, 96 than the high-temperature data. We have found that an
adequate way for duly different weightings of the individual experimental heat capacity values,
Cex .

p (Ti ), is given by weighting factors, Wi , which are inversely proportional to their squares,74, 96

i. e. Wi ∝ (Cex .
p (Ti ))−2. The actual aim of the least-mean-square fitting processes within the present

context consisted thus in minimizations of sums of type,74, 96

∑
i

Wi
(
Cth.

p (Ti ) − Cex .
p (Ti )

)2 ∝
∑

i

(
Cth.

p (Ti ) − Cex .
p (Ti )

Cex .
p (Ti )

)2

→ min ., (30)

where we have denoted by Cth.
p (Ti ) the theoretical heat capacity values for the individual Ti -points

(as resulting from Eq. (12) in combination with (10)). Properly speaking, this special choice of
weighting factors corresponds to a minimization of the sums of squares just of the relative deviations,
∝ (Cth.

p (Ti )/Cex .
p (Ti ) − 1)2, between experimental and theoretical C p(Ti ) values. This version of the

least-mean-square minimization procedure is consistent with the well known fact that the relative
deviations from smoothed curves are as a rule nearly constant (of order 0.5%), from the cryogenic
region up to room temperature (whereas the absolute values of deviations are automatically tending
to 0 in the T → 0 limit).



082108-23 R. Pässler AIP Advances 3, 082108 (2013)

C. Rough estimations of limiting Debye temperatures for the harmonic regime

In contrast to the aforementioned advantages of the present analytical framework, which is
basing essentially on the refined non-Debye interpolation formula (10), it appears necessary to in-
dicate also an inherent shortcoming of this model (in comparison e. g. with multi-oscillator hybrid
models).43, 50, 74 This is due to the circumstance that the magnitudes of material-specific PDOS spec-
tral moments,43 μ

(m>−3)
P , can not directly be derived from the fitted sets of the parameters occurring in

Eq. (10) (Table I). This deficiency concerns also estimations of a frequently quoted moment-related
quantity like the T → ∞ limiting Debye temperatures, �Dh(∞) (cf. Table V), which are known to be

generally connected with the second moments by the relation29, 31, 43, 50 �Dh(∞) = 2

√
(5/3)μ(2)

P /kB

(cf. Eq. (B3a)). In terms of the latter, one can represent the high-temperature asymptote (5) of the
κP (T ) function in the equivalent form

κP (T ) → 1 − (�Dh(∞))2

20T 2
. (31)

On the other hand, the presently used non-Debye formula (10) for κP (T ) functions tends in the
high-temperature limit to the asymptote

κP (T ) → 1 −
(

r2(Th)T 2
h

2
− c5

c7

)
1

T 2
. (32)

Comparing (32) with (31) one can conclude that limiting Debye temperatures, �Dh(∞), should
be given in terms of the presently estimated parameters by

�Dh(∞) = 2

√
10

(
r2(Th)T 2

h − 2c5/c7
) ∼= 2

√
10r2(Th) × Th . (33)

(Note that, according to the parameter sets listed in Table I, the 2c5/c7-terms are throughout by
orders of magnitude lower than the largely dominating r2(Th)T 2

h terms.) Using, tentatively, the latter
expression we obtain from the couples of the fixed Th positions in combination with the respective
r2(Th) values (listed in Table I) for the limiting Debye temperatures, �Dh(∞), the following values:
491 K for GaP, 359 K for GaAs, 285 K for GaSb, 448 K for InP, 320 K for InAs, and 244 K for
InSb. Comparing these approximate �Dh(∞) values with their more reliable counterparts listed
in Table V (cf. also Table B1 in the supporting information to Ref. 74) we find relatively good
agreements (within deviation up to 3%) for InP, InAs, and InSb. In contrast to this, we are concerned
for GaP, GaAs, and GaSb with relatively large deviations (underestimations ranging between 4%
and 8%). Thus the presently used non-Debye interpolation formula (10) is obviously not well suited
for accurate determinations of high-temperature limiting Debye temperatures. (Note that the same
statement applies also to the original version37 of the non-Debye interpolation formula).

D. Qualitatively different shapes of high temperature heat capacity curves

A crucial feature of the present analytical framework (Sec. II) is its adaptability to qualitatively
different (i. e. concave vs. convex) curve shapes in the high temperature region. This change-
ability of material-specific curve shapes is due to the considerable variability of the weights of
quadratic (∝ A2T 2) vs. linear (∝ A1T 1) components, which are determining the actual shapes of
the anharmonicity-related heat capacity differences, C p(T ) − CV h(T ) > 0 (Eq. (11)). The corre-
sponding temperature dependences, which are following from the results (Table I) of the fittings in
Sec. III, are shown in Fig. 9. From the latter we see, first of all, that the magnitudes of these differences,
as well as the slopes of the individual C p(T ) − CV h(T ) curves above room temperature (up to about
800 K, at least) are significantly increasing, both for the Ga-group-V and for the In-group-V materi-
als, with increasing anion masses. Moreover we see that these curves reveal a pronounced qualitative
difference between the arsenides and antimonides, on the one hand, and phosphides, on the other
hand. Concerning the latter we see that the anharmonicity-related differences C p(T ) − CV h(T ) > 0
are comparatively small, and their T -dependences are nearly linear. Consequently, their combina-
tion (12) with the inherently convex dependences of the harmonic parts, Chigh

V h (T ), does not alter the
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FIG. 9. Temperature dependences of the anharmonicity-related differences of isobaric vs. isochoric (harmonic) heat capac-
ities, C p(T ) − CV h (T ), which are resulting (via Eq. (11), in combination with Eq. (10)), from the parameter values quoted
for the six cubic III-V materials under study in Table I.

curvatures of the latter. This explains the exclusively convex shape of the resulting Chigh
p (T ) curves,

both for GaP (Fig. 1) and for InP (Fig. 4). In contrast to this, the C p(T ) − CV h(T ) dependences for
GaAs, InAs, GaSb, and InSb are seen from Fig. 9 to be obviously strongly governed by quadratic
terms. The inherently concave behaviors of the latter are so pronounced that they are even capable
of overcompensating the convex behaviors of the associated harmonic parts, Chigh

V h (T ). This explains

the change of the curvatures (snake-like behaviors) of the resulting Chigh
p (T ) curves from convex

shape (at T ≈ Tr ) to a more or less pronounced concave shape in the upper parts of the high temper-
ature region, for GaAs (Fig. 2), GaSb (Fig. 3), InAs (Fig. 5), and InSb (Fig. 6). On the other hand,
it can not be excluded that in some special case the concave vs. convex shape compensation effects
are accidentally such that the shape of the resulting Chigh

p (T ) curve changes from convex behavior
(at T ≈ Tr ) to an approximately linear one (close to the melting point). Accordingly, for such a
special state of affairs, the respective Chigh

p (T ) dependence would have a chance to be satisfacto-
rily simulated even by the simple Maier-Kelley equation (1). However, a definitive discrimination
between concave, nearly linear, and/or convex shapes of the upper parts of Chigh

p (T ) curves (close
to melting points) can hardly be made at present in view of the excessive scarcity and uncertainty
of most high-temperature heat capacity and/or enthalpy data which are available hitherto for III-V
materials (including many other binary and ternary materials, too).

VI. IMPROVED HIGH-TEMPERATURE POLYNOMIAL REPRESENTATION
AND NOVEL RESULTS

Concerning the high-temperature parts of isobaric heat capacities, Chigh
p (T ), we were concerned

here continually with the notorious problem12–17 of the occurrence of rather large discrepancies for
III-V compounds. Unusually large differences (up to an order of 10%, in the vicinity of melting
points) have been found in particular between the Chigh

p (T ) values quoted by different authors and/or
in different data reviews for GaAs (cf. Fig. 2) and InAs (cf. Fig. 5). Fortunately, on the basis of the
criterion (16) we were able to reject several Chigh

p (T ) data sets as obviously erroneous ones. This
concerned above all those given in Ref. 4, for GaP, and in Refs. 5, 6 and 19, for GaAs and InAs.



082108-25 R. Pässler AIP Advances 3, 082108 (2013)

Incisive additional arguments supporting the definitive rejection of these data sets were provided (in
Subsection IV C) in face of the excessively large deviations of the respective Debye temperature
points, �D(T ) (shown in Figs. 7 and 8), from common trends. Furthermore, in view of an extremely
weak decrease of the fictitious �D(T ) curve due to Refs. 10 and 15 for GaP (double-dashed-dotted
curve in Fig. 7), this apparent alternative for the Chigh

p (T ) behavior of GaP could also be assessed as
a physically hardly realistic one. On the other hand, it was not possible to exclude several residual
uncertainties, especially for GaAs and InAs, which are inherent to hitherto available literature data.
The corresponding uncertainty ranges are indicated by the bifurcations between the upper and lower
double-dashed-dotted curves, which were due to tentative alternative fittings of qualitatively more
or less different Chigh

p (T ) data sets, namely those of Ref. 12 vs. 20 for GaAs, in Fig. 2, and those of
Ref. 4 vs. 20 for InAs, in Fig. 5. These bifurcations are visualizing a rapid increase of uncertainties
with increasing temperature. We see that, close to the melting points, the residual uncertainties are
reaching an order of about 3 J/(Kmol) (i. e. nearly 5%) for GaAs and about 6 J/(Kmol) (i. e. nearly
10%) for InAs.

Particularly in view of the excessively large residual uncertainty for InAs we would like to
make here still an attempt to re-evaluate some genuine experimental data for enthalpy differences,
	Hp(T ) ≡ Hp(T ) − Hp(Tr ), that are available in graphical form from Refs. 10 and 20, for GaAs and
InAs. An improved numerical analysis of such 	Hp(T ) data requires, of course, a more appropriate
analytical model than those ones used in former enthalpy research papers.

A. Construction of an improved high-temperature polynomial representation

In order to establish an improved analytical model for high-temperature data analyses, we take
into considerations the following points of view. Firstly, it is well know from Thirring’s global
high-to-intermediate-temperature representation85 that the harmonic parts of heat capacities can be
represented in general by a Taylor series consisting exclusively of T −2n-power terms,

Chigh
V h (T ) = CV h(∞) − C−2/T 2 + C−4/T 4 − ..., (34)

where the constant (a priori fixed) term is just coincident with the classical Dulong-Petit limit,
CV h(∞) = 3n A R, and the subsequent two lowest-order expansion coefficients are given in terms of
the corresponding even-order moments24, 29, 50, 82, 85 of the individual PDOS spectral functions, μ

(2)
P

and μ
(4)
P , by the relations C−2 = CV h(∞)μ(2)

P /12(kB)2 and C−4 = CV h(∞)μ(4)
P /240(kB)4. Secondly,

for the anharmonicity-related differences (11) in the high-temperature region, one can substitute the
characteristic low-temperature reduction factor in roughest approximation by its T → ∞ limiting
value, (κp(T → ∞))2 = 1. In this way we reduce (11) to the simplified form50, 92

Chigh
p (T ) − Chigh

V h (T ) = C1T + C2T 2 + ..., (35)

(where Cn
∼= CV h(∞)An , n = 1, 2,. . . ). Lumping, henceforth, the components (34) and (35) together,

we come thus to a high-temperature expression for isobaric heat capacities of the special form

Chigh
p (T ) = CV h(∞) − C−2/T 2 + C−4/T 4 + C1T + C2T 2. (36)

In order to verify the actual degree of usability of this high-temperature polynomial we have
performed test fittings of large sequences of the pre-calculated C p(T ) values (listed in Table II),
which resulted from the primary fittings by means of the original C p(T ) formula (Eq. (12)). The
readjusted Chigh

p (T ) curves due to Eq. (36) are shown in Figs. 10 and 11, and the respective quadruples
of empirical parameter values are listed in Table IV. We have found that, within the respective T -
intervals (indicated in Table IV), the readjusted Chigh

p (T ) curves are practically indistinguishable
from the original C p(T ) curves shown in Figs. 1 to 6. (Note that the differences between original
C p(T ) values and the readjusted ones, Chigh

p (T ), are throughout smaller than 0.05%).
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FIG. 10. Reproduction of upper sections of the previously determined C p(T ) and CV h (T ) curves, for GaP, GaAs, and GaSb

(cf. the solid and dashed curves, in Figs. 1 to 3), by means of the properly devised polynomials, i. e. Eq. (36) for Chigh
p (T )

(———) and Eq. (34) for Chigh
V h (T ) (- - - - -), with coefficients quoted in Table IV. (Symbols for selected data are the same as

in Figs. 1 to 3.)

B. Joint fittings of heat capacity and enthalpy data for GaAs and InAs

The obviously excellent functioning of Eq. (36) for reproductions of given C p(T ) dependences
encouraged us to use this formula also as a basis for possible re-evaluations of enthalpies (29).
Performing the corresponding integration one obtained readily (exactly) for the relevant enthalpy
differences a polynomial expression of the form

H high
p (T ) − Hp(Tr ) = CV h(∞) (T − Tr ) + C−2

(
T −1 − T −1

r

) − C−4
(
T −3 − T −3

r

)
/3 +

+C1
(
T 2 − T 2

r

)
/2 + C2

(
T 3 − T 3

r

)
/3. (37)

The couple of these novel, self-consistent heat capacity and enthalpy expressions (i. e.
Eqs. (36) and (37)) can be used, e. g., in the following way. Fitting first a duly truncated (up-
per) section of low-temperature heat capacity data, Clow

p (T ) > 0.8 · CV h(∞), by means of Eq. (36),
one obtains preliminary values for the coefficients C−2, C−4, and C1. Using the latter in Eq. (37)
one can adjust the parameter C2 by fitting the given enthalpy differences, Hp(Ti ) − Hp(Tr ) > 0,
from which follows readily a corresponding series of provisional Chigh

p (Ti ) data points via the first
derivative of Eq. (37) (i. e. via Eq. (36)). The latter Chigh

p (Ti ) data can then be used, in combination
with the given low-temperature data set, Clow

p (T ), for a novel (complete) fit via Eq. (36). Performing,
if necessary, several cycles of such alternating fitting processes for heat capacity and enthalpy data
one has a good chance of reaching a stabilization of the whole set of the 4 empirical parameters.

Using, accordingly, some former enthalpy data available in graphical form for GaAs10, 20 and
for InAs,20 we have derived in this way novel, self-consistent sets of Chigh

p (Ti ) data points. These
are represented by solid circles (●) in Figs. 2 and 10 (for GaAs) and in Figs. 5 and 11 (for InAs).
It is remarkable that, particularly the novel set of Chigh

p (Ti ) data points for GaAs, shows a rather
pronounced concave behavior18 in the region from 800 K up to the melting point. This is in analogy
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TABLE IV. Adjusted magnitudes of the empirical parameters involved by the presently devised polynomial (36), which
provided an accurate reproduction (shown in Figs. 10 and 11) of upper sections, C p(T ) > 0.8 · CV h (∞), of the previously
fitted C p(T ) curves (cf. Figs. 1 to 6).

GaP GaAs GaSb InP InAs InSb
intervals (K) 190 to 1730 140 to 1514 110 to 991 200 to 910 130 to 1221 110 to 797

C−4 (J · K3/mol) 4.8571 × 109 1.3578 × 109 5.5329 × 108 3.9538 × 109 1.1300 × 109 3.3116 × 108

C−2 (J · K1/mol) 6.3373 × 105 3.3667 × 105 2.1701 × 105 5.0411 × 105 2.6205 × 105 1.5497 × 105

C1 (J/(K2mol)) 2.4292 × 10−3 1.4663 × 10−3 2.2826 × 10−3 2.0781 × 10−3 2.1265 × 10−3 2.6561 × 10−3

C2 (J/(K3mol)) 1.5084 × 10−7 3.6197 × 10−6 6.6068 × 10−6 1.4272 × 10−7 5.9200 × 10−6 7.6558 × 10−6
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FIG. 11. Reproduction of upper sections of the previously determined C p(T ) and CV h (T ) curves, for InP, InAs, and InSb

(cf. the solid and dashed curves, in Figs. 4 to 6), by means of the properly devised polynomials, i. e. Eq. (36) for Chigh
p (T )

(———) and Eq. (34) for Chigh
V h (T ) ((- - - - -), with coefficients quoted in Table IV. (Symbols for selected data are the same

as in Figs. 4 to 6.)

to the concave shapes of the high-temperatures sections (T > 400K) of the fitted C p(T ) curves for
GaSb (Fig. 10) and InSb (Fig. 11). On the other hand we see also from Fig. 11 that the novel set of
Chigh

p (Ti ) data points for InAs is tending to a nearly linear dependence, from 400 K up to the melting
point. This approximate linearity is apparent in particular from the dotted curve shown for InAs (in
Fig. 11), which represents the direct result of the iterative fitting procedure sketched above.

VII. SUMMARY

It was the main aim of this paper to provide comprehensive analytical and numerical descriptions
of the temperature dependences of isobaric heat capacities of several III-V materials over unusually
broad temperature intervals, beginning from absolute zero up melting points. The analytical basis
for the respective least-mean-square fittings was given by a refined version (Eq. (10)) of the recently
proposed non-Debye heat capacity formula37 (cf. the Appendix A), in combination with a duly
general formula43, 50, 74, 82 (Eq. (11)) for the anharmonicity-related differences of isobaric vs. isochoric
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(harmonic) heat capacities. The fittings in the high-temperature region were significantly impeded
by the notorious circumstance that the data sets quoted in different research papers and/or data
reviews differed in many cases significantly from one another (up to an order of 10%). Therefore
we have invoked several, physically plausible criteria (in Sec. III and IV), on the basis of which we
were able to exclude a priori a variety of obviously inadequate data sets from further considerations.
Furthermore we have devised (in Sec. VI) a physically adequate couple of four-parameter polynomial
equations for heat capacities and enthalpies within regions of intermediate to high temperatures, by
means of which we could estimate in self-consistent way novel, high-temperature heat capacity
values for GaAs and InAs.

Representative sets of isobaric heat capacity values for the whole temperature ranges of interest
(i. e. from the liquid-helium region up to the vicinity of melting points), that resulted from the
comprehensive least-mean-square fitting processes in Sec. III, are listed in Table II. An important
novel aspect of the heat capacity behaviors in the high-temperature region are the more or less
pronounced snake-like shapes (changes from convex to concave shape) both for arsenides (Fig. 10)
and antimonides (Fig. 11). These refined results might be suitable for being eventually taken into
consideration within forthcoming editions of high-temperature data reviews.4–6 At the same time we
would like to point out that moderate modifications of heat capacity values up to about ±2 J/(Kmol),
for very high temperatures (close to melting points), should be envisaged at the prospective of more
comprehensive and accurate experimental heat capacity and/or enthalpy data that might become
available in future.

APPENDIX A: TRANSFORMATION AND REFINEMENT OF THE CHARACTERISTIC
NON-DEBYE HEAT CAPACITY FORMULA

It had been shown in Ref. 37 that the harmonic parts (3) of lattice heat capacities can be simulated
in good approximation by a low-to-high-temperature interpolation formula of type

CV h(T ) = c3T 3 + c5T 5 + c7T 7

2

√
1 +

6∑
n=3

β2nT 2n +
(

c7T 7

3n A R

)2
≡ c3T 3 + c5T 5 + c7T 7

2

√
1 +

7∑
n=3

b2n(To)
(

T
To

)2n
, (A1)

where β2n (for n =3, 4, 5, and 6) and c3+2n (for n =0, 1, and 2; cf. Eq. (6)) are empirical parameters,
which are to be adjusted in the course of least-mean-square fitting processes. (Note that the second
representation of Eq. (A1), which is just identical with Eq. (2) of Ref. 37, involves an arbitrarily
chosen scaling temperature, To, with respect to which the corresponding expansion coefficients,37

b2n(To) = β2nT 2n
o (n = 3 to 6) and b14(To) = (

c7T 7
o /3n A R

)2
, are dimensionless quantities.)

Multiplying now both the numerator and the denominator by the factor 3n A R/c7T 7 one can
rewrite the CV h(T ) formula (A1) in the usual product form (10),

CV h(T ) = 3n A RκP (T ), (A2)

where the respective (normalized) heat capacity shape function is given by

κP (T ) =
c3

c7T 4 + c5
c7T 2 + 1

2

√(
3n A R
c7T 7

)2
+

6∑
n=3

(
3n A R

c7

)2
β2n

T 14−2n + 1

≡
1 + c5

c7T 2 + c3
c7T 4

2

√
1 +

4∑
m=1

ρ2m

T 2m +
(

3n A R
c7T 7

)2
. (A3)

The latter representation of the κP (T ) function (A3) is due to an introduction of transformed
expansion coefficients, ρ2m , which are given in terms of the original ones, β2n , by the definition
ρ2m ≡ (3n A R/c7) β14−2m (m = 1, 2, 3, and 4).

A characteristic feature both of the original and of the transformed versions (i. e.
Eq. (A1) and (A3)) of analytical CV h(T ) ∝ κP (T ) formulae is the occurrence of exclusively even-
order power terms of the temperature in the respective denominators (i. e. ∝ T 2n-terms, n = 3 to
7, in (A1), or ∝ T −2m-terms, m =1 to 4 and 7, in (A3)). Notwithstanding the fact that such 7-
parameter versions are already capable of providing relatively good simulations of CV h(T ) ∝ κP (T )
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functions (as it had been shown e. g. for GaN and ZnO in Ref. 37), we have made within the
present study the observation that further refinements of numerical simulations, particularly within
the liquid-hydrogen-nitrogen region, can be readily achieved when we admit the incorporation of
two additional odd-order power terms (namely ∝ T −5 and ∝ T −7 terms) in Eq. (A3). Furthermore
we have introduced (in analogy to Ref. 37) convenient (material-specific) scaling temperatures, Ts ,
by their identification with the characteristic (easily detectible) temperature points, Th (Eq. (9)), at
which the individual C p(T ) curves are reaching just 50% of the classical Dulong-Petit value. In this
way we came finally to the refined (9-parameter) κP (T ) expression (Eq. (10)) used in the present
paper.

Let us still make some useful remarks concerning the present (apparently optimum) choice
(9) for the scaling temperatures, T ( f i xed)

s = Th , with respect to practical applications of Eq. (10).
If one would adopt one and the same Ts value for a larger variety of materials (e. g. for the
presently considered ensemble of six III-V materials), one would be concerned with the somewhat
cumbersome circumstance that fitted magnitudes of the respective expansion coefficients, rn(Ts), are
changing strongly (partly even by orders of magnitude) from one material to the other. Fortunately,
such strong variations of parameter sets could throughout be avoided due to our adoption of different,
material-specific values for the scaling temperatures, T ( f i xed)

s = Th (due to Eq. (9)).
Taking further into account that, in the lower cryogenic regions (from 0 up to Th , at least), the

isobaric lattice heat capacities, C p(T ), are nearly coincident with the harmonic parts of isobaric
heat capacities, i. e. C p(0 < T ≤ Th) ∼= CV h(0 < T ≤ Th), it follows readily from Eq. (10) (and
Eq. (A2)) that κP (Th) ∼= 0.5. Observing further that the ∝ T −2n terms in the numerator of Eq. (10)
(as well as the ∝ T −14 term in the denominator) at the point T → Th use to be by orders of magnitude
smaller than unity, we see that the denominator at the point T → Ts = Th must be approximately
equal to 2. This corresponds to an approximate equality of

r2(Th) +
8∑

n=4

rn(Th) ∼= 3, (A4)

for the sum of the Th-related expansion coefficients occurring in the denominator of Eq. (10).

APPENDIX B: DETERMINATION OF LIMITING DEBYE TEMPERATURES DUE TO THE
HARMONIC REGIME

An effective procedure for determining high-temperature limiting Debye temperatures,
�Dh(T → ∞) on the basis of measured (isobaric) low-temperature heat capacity data, C p(T ) →
CV h(T ), had been invented years ago by Barron et al.29, 31 A convenient feature of this conventional
method is due to the circumstance that, in analogy to the exponential series analysis scheme,82

it does not assume a preliminary analytical modeling of PDOS spectral functions. This method
is based on the observation that the low-temperature dependences of squares, (�Dh(T ))2, of the
“true” Debye temperatures, which are defined (in analogy to Eq. (20)) on the basis of the harmonic
heat capacity components, CV h(T ) (Eq. (3)), can be generally represented in form of Taylor series
expansions involving exclusively even-order powers of the reciprocal temperature with alternating
signs,29, 31, 43, 47, 50, 97 i. e. explicitly

(�Dh(T ))2 = (�Dh(∞))2

(
1 +

∞∑
s=1

(−1)sa2s

(
�Dh(∞)

T

)2s
)

. (B1)

Here �Dh(∞) represents the T → ∞ limit of the “true” (harmonic) Debye temperature, and the
expansion coefficients a2s use to be positive (and are strongly decreasing in magnitude with increasing
order, 1 � a2 � a4 � a6...; cf. Table V).

Furthermore, within the frame of the present study, we have found that in the vicinities of the
maxima of the effective Debye temperatures, �D(T ) ≈ �D max (cf. Figs. 7 and 8 and Table III),
where the differences �Dh(T ) − �D(T ) between “true” and effective Debye temperatures are as a
rule relatively small, �Dh(T ) − �D(T ) � �Dh(T ) (cf. also Figs. 12 and 13), these differences are
in good approximation proportional to certain T p-power dependences, [�Dh(T ) − �D(T )] ∝ T p,
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TABLE V. Limiting values of “true” (harmonic) Debye temperatures, �Dh (∞) ≡ ε∞
D /kB , and of the respective expansion

coefficients involved by Eq. (B1), a2 to a8, which have been determined, in combination with the empirical parameters p
and ap , via fittings (see Figs. 12 and 13) of effective Debye temperatures, �D(T ), by means of Eq. (B2). Further quoted are

the moment-related even-order phonon energies, εP (m) ≡ (μ(m)
P )1/m (m = 2 to 10), which are resulting from Eqs. (B3a) to

(B3e) for the corresponding moments, μ
(m)
P .

GaP GaAs GaSb InP InAs InSb
intervals (K) 60 to 290 20 to 240 20 to 250 30 to 300 20 to 270 17 to 270

�Dh (∞)((K) 522.3 375.6 308.2 448.5 314.9 250.6
εDh (∞) ((meV) 45.0 32.4 26.6 38.6 27.1 21.6
a2 1.178 × 10−2 0.898 × 10−2 1.102 × 10−2 1.536 × 10−2 1.211 × 10−2 1.166 × 10−2

a4 1.005 × 10−4 0.579 × 10−4 0.868 × 10−4 1.407 × 10−4 0.964 × 10−4 0.908 × 10−4

a6 0.415 × 10−6 0.170 × 10−6 0.334 × 10−6 0.607 × 10−6 0.370 × 10−6 0.348 × 10−6

a8 0.654 × 10−9 0.184 × 10−9 0.494 × 10−9 0.979 × 10−9 0.540 × 10−9 0.514 × 10−9

p 3.287 3.210 2.958 2.034 4.396 3.744
ap 0.519 0.246 0.376 0.085 0.218 0.863

εP (2) (meV) 34.9 25.1 20.6 29.9 21.0 16.7
εP (4) (meV) 39.1 27.7 23.0 34.2 23.6 18.7
εP (6) (meV) 41.5 29.2 24.4 36.5 25.1 19.9
εP (8) (meV) 43.2 30.3 25.3 38.0 26.1 20.7
εP (10) (meV) 44.4 31.1 26.0 39.1 26.8 21.2
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FIG. 12. �D(T ) vs. T −2 representation of effective Debye temperatures (cf. Fig. 7), which are due to the Clow
p (T ) data

in consideration for GaP (Refs. 54 (◦), 57 (�), and 91 (�)), for GaAs (Refs. 32 (�), 52 (◦), and 58 (�)), and for GaSb
(Refs. 32 (�) and 52 (◦)). Solid curves are representing the fittings of the �D(T ) data by means of Eq. (B2), with the
empirical parameter values quoted in Table V. Dashed curves show the corresponding high-temperature dependences of the
“true” (harmonic) Debye temperatures, �Dh (T ) (due to Eq. (B1)).
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FIG. 13. �D(T ) vs. T −2 representation of effective Debye temperatures (cf. Fig. 8), which are due to the Clow
p (T ) data

in consideration for InP (Refs. 52 (◦), 60 (�), and 94 (�)), for InAs (Refs. 32 (�), 52 (◦), and 60 (�)), and for InSb
(Refs. 32 (�) and 52 (◦)). Solid curves are representing the fittings of these �D(T ) data by means of Eq. (B2), with the
empirical parameter values quoted in Table V. Dashed curves show the corresponding high-temperature dependences of the
“true” (harmonic) Debye temperatures, �Dh (T ) (due to Eq. (B1)).

with exponents ranging usually within an interval of 2 < p < 5. This means that the T -dependences
of the effective Debye temperatures in these regions can be described approximately by an expression
of the form

�D(T ) ∼= �Dh(∞) 2

√√√√(
1 +

∞∑
s=1

(−1)sa2s

(
�Dh(∞)

T

)2s
)

×
[

1 − ap

(
T

�Dh(∞)

)p]
. (B2)

Henceforth, we can determine the limiting Debye temperature, �Dh(∞), and the expansion coeffi-
cients, a2s (s = 1, 2, 3, . . . ), in combination with the anharmonicity-related parameters p and ap,
via least-mean-square fittings of given �D(T ) data sets on the basis of Eq. (B2). In this way we
come to the fitted �D(T ) curves (solid curves, in Figs. 12 and 13). The associated �Dh(T ) curves
follow then readily from the square root of Eq. (B1) (dashed curves, in Figs. 12 and 13). This
unprecedented procedure of fitting more extended (non-monotonic) �D(T ) data sets (via Eq. (B2)),
instead of truncated (monotonic) sections of �D(T ) → �Dh(T ) (via Eq. (B1)), has the significant
advantage that parameter uncertainties, which were usually caused by more or less arbitrary choices
of the upper truncation points for the residual �D(T ) → �Dh(T ) data to be actually fitted, can be
largely avoided. The parameter values resulting from this more comprehensive fitting procedure for
the materials under study are listed in Table V.

It had been shown within the frame of a duly detailed analytical study50 that the first five
even-order moments of PDOS spectra, μ(2)

P to μ
(10)
P , can be represented in form of products of corre-

sponding even-order powers of the limiting Debye energies, εDh(∞) ≡ kB�Dh(∞), in combination
with characteristic non-Debye factors that are defined in terms of the individual expansion coeffi-
cients a2 to a8 (listed in Table V). The respective even-order moments of material-specific PDOS
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spectra are given (according to the supporting information to Ref. 50) by the following expressions:43

μ
(2)
P = 3

5
(εDh(∞))2, (B3a)

μ
(4)
P =

[
3

7
+ 12a2

]
(εDh(∞))4, (B3b)

μ
(6)
P =

[
1

3
+ 108

5
a2 + 1512

5
a4

]
(εDh(∞))6, (B3c)

μ
(8)
P =

[
3

11
+ 200

7
a2 + 2160

7
(2a4 + (a2)2) + 8640a6

]
(εDh(∞))8, (B3d)

μ
(10)
P =

[
3

13
+ 168

5
a2 + 880(a4 + (a2)2) + 19008(a6 + a2a4) + 266112a8

]
(εDh(∞))10.

(B3e)
Let us still note that the first three ones of these relations are equivalent to those ones given for
μ

(2)
P ,μ(4)

P , and μ
(6)
P , in Refs. 29 and 31, whereas the subsequent two ones, for μ

(8)
P and μ

(10)
P , are due

to a more comprehensive analytical study.50 The respective, moment-related phonon energy values,
εP (2s) ≡ (μ(2s)

P )1/2s , are listed in Table V.
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082108-33 R. Pässler AIP Advances 3, 082108 (2013)

29 T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy. Soc. A 242, 478 (1957).
30 T. H. K. Barron and J. A. Morrison, Proc. Roy. Soc. A 256, 427 (1960).
31 T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy. Soc. A 250, 70 (1959).
32 T. C. Cetas, C. R. Tilford, and C. A. Swenson, Phys. Rev. 174, 835 (1968).
33 M. Sanati, S. K. Estreicher, and M. Cardona, Solid State Commun. 131, 229 (2004).
34 M. Cardona, R. K. Kremer, M. Sanati, S. K. Estreicher, and T. R. Anthony, Solid State Commun. 133, 465 (2005).
35 A. Gibin, G. G. Devyatykh, A. V. Gusev, R. K. Kremer, M. Cardona, and H.-J. Pohl, Solid State Commun. 133, 569 (2005).
36 R. K. Kremer, M. Cardona, E. Schmitt, J. Blumm, S. K. Estreicher, M. Sanati, M. Boćkowski, I. Grzegory, T. Suski, and
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