go internal assign name=VB n.value=(0) #go atlas go atlas simflags="-P 4" #go atlas simflags="-V 5.30.0.R -P 4" mesh width=300 outf=device.str master.out x.m l=0 s=1 x.m l=60 s=1 #SiO2 y.m l=0 s=0.02 y.m l=-0.15 s=0.02 #IGZO y.m l=0 s=0.002 y.m l=0.03 s=0.002 set Eg=2.8 ## DOS based on the reference paper # acceptor-like tail state set nta=2.7049211961849614e+19 set wta=0.016207992875376998 # acceptor-like Gaussian state set nga=1.8628671538341443e+18 set wga=0.7544111636992361 # donor-like tail state set ntd=2.2984057189441376e+19 set wtd=0.0028272760862172058 # donor-like Gaussian state set ngd=0 set egd=2.62 set wgd=0.1 #drift mobility set mun=10.170835033336168 # IGZO channel doping set cdp=9.611995670748552e+17 set T=303 set dosfile="dos.out" set IdVglog="IdVg.log" region num=1 user.material=a-IGZO y.min=0 y.max=0.03 region num=2 material=sio2 y.min=-0.15 y.max=0 elec num=1 name=gate x.min=0 x.max=60 y.max=-0.15 y.min=-0.15 elec num=2 name=source x.min=0 x.max=5 y.max=0.03 y.min=0.03 elec num=3 name=drain x.min=55 x.max=60 y.max=0.03 y.min=0.03 material material=a-IGZO user.default=Silicon user.group=semiconductor \ affinity=4.3 eg300=$Eg nc300=5e18 nv300=5e19 \ permittivity=13.0 \ mun=$mun mup=0.1 doping uniform n.type concentration=$cdp region=1 contact num=1 n.poly # # We also define a workfunction for the source and drain that # is very close to the conduction edge. In the reference the # authors observed that without a workfunction the results for # ohmic boundaries were not significantly different than the # Schottky model. # contact num=2 workf=4.33 contact num=3 workf=4.33 # models models srh fermi temp=$T print # # Key to the characterization of amorphous materials is the # definition of the states within the band gap. # # a-IGZO channel bulk DOS defects reg=1 cont numa=128 numd=128 \ nga=$nga ega=0.0 wga=$wga \ ngd=$ngd egd=$egd wgd=$wgd \ wta=$wta nta=$nta \ wtd=$wtd ntd=$ntd \ sigtae=1e-17 sigtah=1e-15 sigtde=1e-15 sigtdh=1e-17 \ siggae=2e-16 siggah=2e-15 siggde=2e-15 siggdh=2e-16 \ tfile="$dosfile" ## Interface properties # energy of IF acceptor-like state #set aelev=0.5 # density of IF acceptor-like state #set adens=1e18 # energy of IF donor-like state #set delev=3.15 # density of IF donor-like state #set ddens=1e20 # interface properties #inttrap e.level=$aelev acceptor density=$adens s.i degen=1 \ # y.min=0.029 y.max=0.03 \ # sign=1e-16 sigp=1e-14 #inttrap e.level=$delev donor density=$ddens s.i degen=1 \ # y.min=0.029 y.max=0.03 \ # sign=1e-16 sigp=1e-14 # # Id-Vg simulation models temp=303.0 solve init solve prev solve vdrain=0.1 solve vgate=0.0 name=gate save outf=device.str log outf=IdVg.log_303.0.log solve vgate=1.0 vdrain=0.1 name=gate solve vgate=2.0 vdrain=0.1 name=gate solve vgate=4.0 vdrain=0.1 name=gate solve vgate=6.0 vdrain=0.1 name=gate solve vgate=8.0 vdrain=0.1 name=gate solve vgate=10.0 vdrain=0.1 name=gate solve vgate=12.0 vdrain=0.1 name=gate solve vgate=14.0 vdrain=0.1 name=gate solve vgate=16.0 vdrain=0.1 name=gate solve vgate=18.0 vdrain=0.1 name=gate solve vgate=20.0 vdrain=0.1 name=gate log off