
Semiconductor Engineering: Numerical Analysis and 
Computer Simulations 
Chapter 1: Course Introduction and Fundamentals of Computer 
Simulation 

1.1 Introduction to the Course 

Welcome to this course on Numerical Analysis and Computer Simulations in 
Semiconductor Engineering. My name is [Professor’s Name, or ‘I’ as in the first person 
narrative, since I’m acting as the professor], and I will be guiding you through the first 
half of this semester, covering topics from Chapter 1 to Chapter 7. Our primary focus 
will be on the essential numerical analysis techniques required to understand, 
develop, and implement programs for sophisticated analyses and computer 
simulations pertinent to semiconductor devices and materials. 

Today’s lecture, the first in this series, will lay the groundwork by introducing the 
fundamental principles of computer simulation. We will also delve into the various 
sources of errors that are inherent in computational calculations, a critical aspect for 
ensuring the reliability and accuracy of our simulations. 

1.2 Course Logistics and Resources 

1.2.1 Textbooks and References For those who prefer an English textbook, a simple 
search for “numerical analysis” or “numerical simulation” will yield numerous 
excellent resources. In particular, for practical algorithms and programming 
techniques, I highly recommend the “Numerical Recipes” series. These books 
provide a comprehensive collection of algorithms and their implementations, serving 
as an invaluable reference for advanced study. 

1.2.2 Programming Environment While word processors like Microsoft Word are 
suitable for document creation, they are generally not ideal for software development. 
For writing and editing program code, a dedicated text editor is essential. I 
recommend using Microsoft Visual Studio Code if you do not already have a 
preferred text editor. It offers robust features for code development across various 
programming languages. 

1.2.3 Generative AI Tools The field of generative AI, such as ChatGPT, has advanced 
rapidly in recent years and can be a powerful learning aid. You are permitted to use 
generative AI for your assignments. However, it is crucial that your submissions 
include your own critical thought, analysis, and improvements derived from the AI’s 



output. Merely copying and pasting AI-generated content will result in a non-
evaluated submission. The goal is to leverage AI as a tool for learning and problem-
solving, not as a substitute for your own intellectual effort. 

1.2.4 Assignments and Grading There will be no final examination for this course. 
Instead, your performance will be evaluated based on a term-end assignment. 
Specific details regarding this assignment will be provided later in the semester. 

1.2.5 Class Recordings and Communication Each lecture will be recorded. If you 
are unable to attend a class or wish to review the material, please inform me via email 
or Slack, and I will ensure you have access to the recording. For any questions or 
clarifications during or after the lecture, please use the Q&A box or contact me 
directly. 

1.3 Today’s Assignment 

To help you focus on the key concepts, I am providing today’s assignment at the 
beginning of the lecture. Please submit your answers via the Learning Management 
System (LMS) within approximately two days, by midnight on June 11th. If you 
encounter issues with LMS access, you may email your answer file, ensuring the 
filename includes your student ID and full name. 

Problem 1: Number Base Conversion You are required to perform the following 
number base conversions: 1. Convert the binary number 101001_2 to its decimal 
(base 10) equivalent. 2. Convert the decimal number 4251_10 to its hexadecimal 
(base 16) equivalent. 

We will cover the necessary methods for these conversions during today’s lecture. 
Please solve these problems manually without relying on any programming tools, 
though you are welcome to use a program to verify your answers afterward. 

Problem 2: Python Program Analysis In the provided lecture materials (typically a 
zip file), you will find several Python programs. Choose one of these programs and 
provide an explanation of what each block or significant part of the source code does. 
If you cannot fully understand a specific part, you should list the problematic code 
sections and articulate why you find them difficult to understand or what their 
purpose seems to be. Even if your answer states, “I couldn’t understand anything,” it 
will be accepted, provided you demonstrate a genuine attempt to engage with the 
code. The aim of this problem is to encourage you to start interacting with and 
analyzing computational code. 



1.4 Fundamentals of Computer Representation 

1.4.1 Binary Nature of Computers At its most fundamental level, a computer 
represents all numerical data using electronic hardware components that have two 
distinct states, typically denoted as 0 and 1. This is known as binary representation. 
The core building blocks of a computer, such as the Central Processing Unit (CPU) 
and memory, are constructed from binary logic gates and memory cells. 
Consequently, the most primitive form of data expression in a computer is based on 
base 2. 

While binary is fundamental, it often requires a large number of digits to represent 
even small values, making it inconvenient for human comprehension. For this reason, 
other number bases, such as octal (base 8) and hexadecimal (base 16), are 
commonly used as more compact representations of binary data, especially in 
programming and hardware contexts. 

1.4.2 Number Systems and Base Conversion 

A number in any base r can be generally represented as a sequence of digits 
(𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛−1 … 𝑎𝑎1𝑎𝑎0)𝑟𝑟. 

1.4.2.1 Converting from Base-r to Base-10 To convert a number from base r to base 
10, we use a positional notation where each digit 𝑎𝑎𝑖𝑖 is multiplied by the base r raised 
to the power of its position i (starting from 0 for the rightmost digit). The sum of these 
products gives the base-10 equivalent. 

Formula: (𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛−1 … 𝑎𝑎1𝑎𝑎0)𝑟𝑟 = 𝑎𝑎𝑛𝑛 ⋅ 𝑟𝑟𝑛𝑛 + 𝑎𝑎𝑛𝑛−1 ⋅ 𝑟𝑟𝑛𝑛−1 + ⋯+ 𝑎𝑎1 ⋅ 𝑟𝑟1 + 𝑎𝑎0 ⋅ 𝑟𝑟0 

• Example 1: Base 10 (Decimal) A decimal number like (1975)10 is inherently 
understood this way: 1 ⋅ 103 + 9 ⋅ 102 + 7 ⋅ 101 + 5 ⋅ 100 = 1000 + 900 + 70 +
5 = 1975 

• Example 2: Base 2 (Binary) Consider the binary number (11011)2: 1 ⋅ 24 + 1 ⋅
23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 16 + 8 + 0 + 2 + 1 = 2710 Thus, (11011)2 is 
equivalent to 2710. 

• Example 3: Base 8 (Octal) Octal numbers use digits from 0 to 7. For (53)8: 5 ⋅
81 + 3 ⋅ 80 = 40 + 3 = 4310 

• Example 4: Base 16 (Hexadecimal) Hexadecimal numbers use digits 0-9 and 
letters A-F, where A=10, B=11, C=12, D=13, E=14, F=15. For (2𝐹𝐹)16: 2 ⋅ 161 +
𝐹𝐹 ⋅ 160 = 2 ⋅ 16 + 15 ⋅ 1 = 32 + 15 = 4710 The maximum value for a two-digit 
hexadecimal number is (𝐹𝐹𝐹𝐹)16, which is 15 ⋅ 161 + 15 ⋅ 160 = 240 + 15 =



25510. This range (0-255) is important as it corresponds to the range 
representable by one byte (8 bits). 

1.4.2.2 Converting from Base-10 to Base-r Converting a decimal number to another 
base r is typically done using the method of repeated division and remainder 
collection. You repeatedly divide the decimal number by r, recording the remainders. 
The base-r number is then formed by reading the remainders from bottom to top (last 
remainder first). 

• Algorithm: 
1. Divide the decimal number N by r. 
2. The remainder is the rightmost digit of the base-r number. 
3. Take the quotient and repeat steps 1 and 2 until the quotient becomes 0. 
4. Collect the remainders in reverse order. 

• Example: Convert 3910 to Base 8 
1. 39 ÷ 8 = 4 remainder 7 (rightmost digit) 
2. 4 ÷ 8 = 0 remainder 4 (next digit) 
3. The quotient is 0, so we stop. 
4. Reading remainders from bottom to top: 478. Thus, 3910 is equivalent to 

(47)8. 

1.4.3 Data Storage Units: Bits and Bytes 

In computer hardware, the most fundamental unit of data is a bit, representing a 
binary digit (0 or 1). However, data is frequently processed and stored in groups of bits. 

• Byte (B): A standard unit, comprising 8 bits. One byte can represent 28 = 256 
different values (from 0 to 255 for unsigned integers). 

• Larger Units: For larger data volumes, prefixes like kilo, mega, giga, and tera 
are used. It’s crucial to understand the distinction between decimal (base 10) 
prefixes and binary (base 2) prefixes in computing: 

o Kilobyte (KB): Traditionally 1024 bytes (210 bytes). Note the uppercase 
‘B’ for byte. If you see ‘kb’ (lowercase ‘b’), it typically means kilobits. 
 1 KB = 210 bytes = 1024 bytes 

o Megabyte (MB): 210 KB = 220 bytes = 1,048,576 bytes. 
o Gigabyte (GB): 210 MB = 230 bytes = 1,073,741,824 bytes. 
o Terabyte (TB): 210 GB = 240 bytes = 1,099,511,627,776 bytes. 

This distinction is important because hard drive manufacturers often use decimal 
prefixes (e.g., 1 TB = 1012 bytes), while operating systems typically report capacities 
using binary prefixes (e.g., 1 TB = 240 bytes), leading to perceived discrepancies. 



1.5 Numerical Representation in Computer Programs 

Computer programs need to handle various types of numbers, not just integers. The 
way these numbers are stored and manipulated dictates the precision and range 
available for calculations. 

1.5.1 Integer Data Types Integer types represent whole numbers without fractional 
components. Their range and memory footprint depend on the number of bits 
allocated to them. 

• Signed vs. Unsigned Integers: 
o Unsigned integers can only represent non-negative values (0 and 

positive integers). An n-bit unsigned integer can represent values from 0 
to 2𝑛𝑛 − 1. 

o Signed integers can represent both positive and negative values. 
Typically, one bit is used for the sign (e.g., 0 for positive, 1 for negative), 
reducing the range for the magnitude. An n-bit signed integer typically 
represents values from −(2𝑛𝑛−1) to 2𝑛𝑛−1 − 1. 

• Common Integer Bit Lengths: 
o 16-bit Integer: 

 Unsigned: 0 to 65,535 
 Signed: −32,768 to 32,767 

o 32-bit Integer: 
 Unsigned: 0 to 4,294,967,295 
 Signed: −2,147,483,648 to 2,147,483,647 

o 64-bit Integer (Long Long Integer in C++): 
 Unsigned: 0 to 1.84 × 1019 
 Signed: −9.22 × 1018 to 9.22 × 1018 

The standard length for integer types is often determined by the underlying CPU 
architecture. Modern CPUs are predominantly 64-bit, making 64-bit integers a 
common default. However, for calculations involving extremely large integers (e.g., 
numbers with trillions of digits like 𝜋𝜋), specialized software implementations (often 
called “multi-precision arithmetic”) are required, as standard hardware integer types 
cannot accommodate such magnitudes. 

1.5.2 Floating-Point Data Types To represent real numbers, which include fractional 
parts and can span a much wider range than integers, computers use floating-point 
data types. These types approximate real numbers using a fixed number of bits to 
represent the sign, exponent, and mantissa (fractional part). 



• IEEE 754 Standard: The representation of floating-point numbers is 
standardized by the IEEE 754 standard, ensuring consistency across different 
hardware and software platforms. This standard defines several formats, 
commonly referred to as: 

o Binary32 (Single Precision): 32 bits 
o Binary64 (Double Precision): 64 bits 
o Binary128 (Quad Precision): 128 bits 

• Structure of an IEEE 754 Floating-Point Number: A floating-point number is 
typically stored in the format ±(1.𝑀𝑀)2 × 2𝐸𝐸, where: 

o Sign bit: 1 bit (0 for positive, 1 for negative). 
o Exponent: Represents the power of 2, often with a bias. 
o Mantissa (or Fraction/Significand): Represents the fractional part (the 

(1.𝑀𝑀)2 part, where the leading ‘1’ is implicit for normalized numbers). 
• Binary64 (Double Precision) Details: A 64-bit double-precision floating-point 

number is allocated as follows: 
o 1 bit for the sign. 
o 11 bits for the exponent. 
o 52 bits for the mantissa (fractional part after the implicit leading ‘1’). 

This configuration allows it to represent approximately 15-17 decimal 
digits of precision and a very wide range of magnitudes (from about 
10−308 to 10308). 

• Precision Requirements in Semiconductor Physics: In semiconductor 
engineering, calculations often require very high precision. For instance, 
consider the energy scales in quantum mechanics: 

o The 1s orbital energy of a hydrogen atom is -13.6 eV. Heavier atoms 
exhibit even larger energy scales (e.g., hundreds of keV for core 
electrons). 

o Thermal energy (𝑘𝑘𝐵𝐵𝑇𝑇) at room temperature (approximately 300K) is 
about 26 meV (or ~62 meV in some contexts, as mentioned in the 
original transcript, which corresponds to a higher temperature or 
specific energy range). 

o Magnetic interaction energies can be in the range of milli-electron volts 
(∼ several meV). 

  To accurately simulate systems that involve a broad spectrum of energy scales, 
from milli-electron volts to mega-electron volts (a range of over nine orders of 
magnitude), we need numbers with sufficient decimal precision. A 64-bit 
floating-point type, offering about 15-17 decimal digits of precision, is 
generally the minimum requirement. For even greater precision, 128-bit (quad-



precision) or higher is used. However, quad-precision is often implemented in 
software rather than hardware, leading to significantly slower computations. 

1.6 Sources of Numerical Errors in Computation 

Numerical calculations performed by computers are subject to various types of errors 
due to the finite nature of digital representation and approximation methods. 
Understanding these errors is crucial for designing robust and accurate simulation 
programs. 

1.6.1 Machine Epsilon and Floating-Point Representation Issues Real numbers 
often have an infinite number of digits (e.g., 𝜋𝜋, 1/3). Computers, however, must store 
these numbers using a finite number of bits. This inherent limitation leads to round-
off error. 

• Exact Representation: Some numbers can be represented exactly in binary 
floating-point. For example: 

o 1.010 = (1.0)2 × 20 
o 0.510 = (1.0)2 × 2−1 
o 0.12510 = (1.0)2 × 2−3 
o 100.010 = (1.1001)2 × 26 (This is 1 ⋅ 22 + 1 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 1 ⋅

22 + 0 ⋅ 21 + 0 ⋅ 20 is wrong, 10010 = (1100100)2 = 1.100100 × 26. It 
has a finite binary representation.) 

• Inexact Representation: Many common decimal numbers cannot be 
represented exactly in binary. 

o 0.110: This number has an infinite, repeating binary representation: 
(0.0001100110011 … )2. As such, it can only be approximated when 
stored as a floating-point number. This approximation introduces a 
small round-off error, which might be in the order of 2 × 10−5 for single-
precision or much smaller for double-precision, but it is always present. 

1.6.2 Types of Numerical Errors 

1. Round-off Error: 
o Definition: Errors arising from the inability to represent real numbers 

exactly with a finite number of bits. Occurs during storage, arithmetic 
operations, and conversion between data types. 

o Example: As noted, 0.110 cannot be precisely stored. Repeated 
addition of such numbers can accumulate these small errors, leading 
to a significant deviation from the mathematically exact result. For 
instance, summing 0.1 one hundred times might not yield exactly 10.0 
in floating-point arithmetic. 



o Loss of Trailing Digits: A related issue occurs when very similar 
numbers are subtracted, or very different magnitude numbers are 
added. If we have 𝑋𝑋 − 𝑌𝑌 where 𝑋𝑋 ≈ 𝑌𝑌, the most significant digits cancel 
out, leaving only the less significant (and potentially error-prone) digits. 
Similarly, adding a very small number to a very large number might 
result in the small number being “swallowed” by the large number’s 
magnitude if the combined precision is insufficient. 
 Example: (1000.0)10 + (1.456)10 in a system with only 4 

significant decimal digits would result in 1001.0, effectively 
losing the 0.456 part. 

o Mitigation: For addition of many small numbers, using Kahan 
summation algorithm or summing from smallest to largest can improve 
accuracy. For subtraction, reformulation of the equation might be 
necessary (e.g., using Taylor series approximations or alternative 
algebraic forms). 

2. Overflow and Underflow: 
o Definition: These errors occur when a numerical calculation produces 

a result that is outside the representable range of the data type. 
o Overflow: The result is too large to be stored. 

 Example: Multiplying two very large numbers that individually fit 
into a double but whose product exceeds double’s maximum 
value ( 10308). 

o Underflow: The result is too small (too close to zero) to be represented 
as a normalized floating-point number, and is typically rounded to zero. 
 Example: A double cannot represent numbers smaller than 

approximately 10−308. If a calculation yields 10−500, it would 
underflow to zero. 

o Impact: Underflow can be particularly problematic in calculations 
involving ratios or exponents, as a result becoming zero when it should 
be a small non-zero value can lead to division by zero or incorrect 
logical paths. 

o Example from Physical Phenomena: Consider the Boltzmann factor 
exp(−𝐸𝐸/𝑘𝑘𝐵𝐵𝑇𝑇). For a wide bandgap semiconductor like an oxide (𝐸𝐸𝑔𝑔 = 4 
eV) at room temperature (𝑘𝑘𝐵𝐵𝑇𝑇 ≈ 62 meV as per original text’s context), 
the argument is 4/0.062 ≈ 64.5. So exp(−64.5) ≈ 10−28. This value is 
well within the range of a double-precision float. However, if we 
consider a material at very low temperature, say 𝑇𝑇 = 3 Kelvin, 𝑘𝑘𝐵𝐵𝑇𝑇 ≈
0.26 meV. For a band gap of 1.1 eV (e.g., silicon), 𝐸𝐸/𝑘𝑘𝐵𝐵𝑇𝑇 = 1.1/
0.00026 ≈ 4230. The Boltzmann factor would be exp(−4230) ≈
10−1837. This value is far smaller than the smallest representable 



number for a 64-bit floating point (10−308), leading to an underflow error 
where the result would be computed as zero. Such scenarios 
necessitate the use of specialized arbitrary-precision arithmetic 
libraries. 

3. Truncation Error: 
o Definition: Errors introduced when an infinite mathematical process 

(like an infinite series, integral, or continuous derivative) is 
approximated by a finite one. 

o Example: Approximating a function using a Taylor series expansion 
involves summing only a finite number of terms. The neglected higher-
order terms constitute the truncation error. 

 𝑓𝑓(𝑥𝑥) = ∑ 𝑓𝑓(𝑛𝑛)(𝑎𝑎)
𝑛𝑛!

𝑁𝑁
𝑛𝑛=0 (𝑥𝑥 − 𝑎𝑎)𝑛𝑛 + 𝑅𝑅𝑁𝑁(𝑥𝑥) The remainder term 𝑅𝑅𝑁𝑁(𝑥𝑥) 

is the truncation error. 
4. Convergence Error: 

o Definition: Arises in iterative numerical methods (e.g., solving systems 
of equations, self-consistent field calculations) when the iteration is 
stopped before the solution has fully converged to its exact value. The 
difference between the computed approximate solution and the true 
solution is the convergence error. 

5. Model/Approximation Error: 
o Definition: Errors inherent in the physical or mathematical model itself, 

due to simplifications or approximations made to render the problem 
computationally tractable. These are distinct from numerical errors 
arising from the computation process. 

o Example: Using a simplified potential model in a quantum simulation, 
neglecting certain interactions, or using a classical model when 
quantum effects are significant. 

1.6.3 Practical Implications and Best Practices 

1. Conditional Statements with Floating-Point Numbers: 
o Problem: Due to round-off errors, two floating-point numbers that are 

mathematically equal might not be precisely equal in computer 
representation. Therefore, direct equality comparisons (if (x == y)) 
are unreliable and should be avoided. 

o Solution: Instead of direct equality, compare if the absolute difference 
between the two numbers is less than a very small “epsilon” value (a 
tolerance). 
 if (fabs(x - y) < EPSILON) 



 Here, EPSILON is a small positive value, e.g., 10−9 or 10−12, 
depending on the required precision and data type (double 
precision can usually handle smaller epsilons). 

o Example: If you expect 3.0 × 10.0 to be 30.0, an if (3.0 * 10.0 == 
30.0) statement might sometimes fail because 3.0 or 10.0 might have 
slight binary representation errors, making their product not exactly 
30.0. 

2. Converting Floating-Point to Integer: 
o Problem: When converting a floating-point number to an integer using 

functions like int(), if the floating-point value is slightly less than an 
integer (e.g., 9.999999999999999), it will be truncated to the lower 
integer (9 instead of 10). 

o Solution: Add a small epsilon before conversion to handle potential 
slight inaccuracies. 
 int_value = int(floating_value + EPSILON) 
 This ensures that values slightly below an integer threshold due 

to round-off are correctly rounded up before truncation. 
3. Information Buried (Catastrophic Cancellation): 

o Problem: Occurs when performing subtractions of nearly equal large 
numbers, leading to a loss of significant digits. This is a severe form of 
round-off error. 

o Example: Calculating exp(−𝑥𝑥) for a large positive 𝑥𝑥 using its Taylor 

series: exp(−𝑥𝑥) = 1 − 𝑥𝑥 + 𝑥𝑥2

2!
− 𝑥𝑥3

3!
+ ⋯ If 𝑥𝑥 is large (e.g., 𝑥𝑥 = 40), some 

terms like 𝑥𝑥𝑛𝑛/𝑛𝑛! can become very large positive or negative numbers 
before the series eventually converges to a very small value. 
Subtracting these large, nearly equal terms leads to the cancellation of 
most significant digits, leaving only the less accurate lower-order digits. 
The computed result can be wildly inaccurate or even have the wrong 
sign. For 𝑥𝑥 = 40, the exact exp(−40) is ≈ 4.25 × 10−18. A direct Taylor 
series summation might yield a positive number like 5.88, completely 
wrong. 

o Solution: Reformulate the calculation to avoid subtracting nearly equal 
large numbers. For exp(−𝑥𝑥) when 𝑥𝑥 > 0, it is much more stable to 
calculate exp(𝑥𝑥) and then take its reciprocal: exp(−𝑥𝑥) = 1

exp(𝑥𝑥)
=

1

1+𝑥𝑥+𝑥𝑥
2
2!+

𝑥𝑥3
3!+⋯

 In this case, all terms in the denominator’s series are 

positive, preventing catastrophic cancellation. 



These considerations are fundamental to developing reliable and accurate numerical 
simulations, especially in fields like semiconductor engineering where precision can 
directly impact the validity of device models and material predictions. 

1.7 Conclusion 

Today, we’ve covered the foundational concepts of numerical representation in 
computers, including various number bases, data storage units, and the intricacies of 
integer and floating-point types. More importantly, we’ve begun to explore the critical 
topic of numerical errors—their sources, types, and practical implications. 
Understanding round-off, overflow, underflow, truncation, and loss of significance is 
paramount for anyone developing computational programs for scientific and 
engineering applications. 

Remember to consider these error sources diligently as you embark on your own 
programming endeavors. It is not enough for a program to produce an answer; it must 
produce an accurate and reliable answer within the context of the problem. 

For your assignment, please attempt Problem 1 (number base conversion) manually 
and Problem 2 (Python program analysis) by thoughtfully examining the provided code. 
These exercises are designed to reinforce today’s lecture material and prepare you for 
more advanced topics in numerical simulation. 

Thank you. 
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