SEMICONDUCTOR ENGINEERING: NUMERICAL ANALYSIS & COMPUTER SIMULATIONS

Lecture 1: Fundamentals of Computer Simulation & Error Analysis

1. Course Introduction & Logistics

- Instructor: [Professor's Name]
- **Topics**: Numerical analysis, computer simulations (Ch 1-7 by me)
- **Today's Focus**: Fundamentals of computer simulation, sources of computational errors
- Recommended Texts:
 - "Numerical Analysis", "Numerical Simulation"
 - "Numerical Recipes" for algorithms & programming
- Programming Tools:
 - Text Editor: Microsoft Visual Studio Code recommended

2. Today's Assignment (Due: Midnight, June 11th)

Problem 1: Number Base Conversion (Manual Calculation Required) 1. Convert $(101001)_2$ to Base 10. 2. Convert $(4251)_{10}$ to Base 16. * Please solve manually first; programs can be used for verification.

Problem 2: Python Program Analysis 1. Choose one Python program from lecture materials. 2. Explain what each block/part of the source code does. 3. If unclear, list the parts you don't understand and explain why. * Objective: Engage with code, even if not fully understood.

3. Fundamentals of Computer Representation

- Binary Nature: Computers operate using binary (base 2) states (0 or 1).
 - CPU & memory are built with binary logic.
 - Primitive expression in computers is Base 2.
- **Human Convenience**: Base 2 is verbose. We often use:
 - Base 8 (Octal): Digits 0-7.
 - Base 16 (Hexadecimal): Digits 0-9, A-F (A=10, F=15).

3.1 Number Base Conversion: Base-r to Base-10

- General Formula: For a number $(a_n a_{n-1} \dots a_1 a_0)_r$:
- $(a_n a_{n-1} \dots a_1 a_0)_r = a_n \cdot r^n + a_{n-1} \cdot r^{n-1} + \dots + a_1 \cdot r^1 + a_0 \cdot r^0$
- $a_0 \cdot r^0$ Example 1: Decimal (Base 10) $(1975)_{10} = 1 \cdot 10^3 + 9$
- $10^{2} + 7 \cdot 10^{1} + 5 \cdot 10^{0} = 1975$ Example 2: Binary (Base 2) $(11011)_{2} = 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = 16 + 8 + 0 + 2 + 1 = 2742$
- $2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = 16 + 8 + 0 + 2 + 1 = 27_{10}$ Example 3: Octal (Base 8) $(53)_{8} = 5 \cdot 8^{1} + 3 \cdot 8^{0} = 40 + 3 = 43_{10}$
- Fxample 4: Hexadecimal (Base 16) $(2F)_{10} = 2 \cdot 16^1 + F$

3.2 Number Base Conversion: Base-10 to Base-

- **Method**: Repeated division by \mathbf{r} and collecting remainders in reverse order.
- Example: Convert 39₁₀ to Base 8
 - 1. $39 \div 8 = 4$ remainder 7
 - 2. $4 \div 8 = 0$ remainder 4
 - 3. Reading remainders upwards: $(47)_8$
- *Verification*: $4 \cdot 8^1 + 7 \cdot 8^0 = 32 + 7 = 39_{10}$

3.3 Data Storage Units: Bits & Bytes

- Bit (b): Smallest unit of data (0 or 1).
- Byte (B): Fundamental group of 8 bits.
 - Can represent $2^8 = 256$ values (0-255).
- Prefixes (Binary vs. Decimal):
 - Kilobyte (KB): 2^{10} bytes = 1024 bytes
 - **Megabyte (MB)**: 2^{20} bytes = 1,048,576 bytes
 - **Gigabyte (GB)**: 2^{30} bytes = 1,073,741,824 bytes
 - **Terabyte (TB)**: 2^{40} bytes = 1,099,511,627,776 bytes
- **Note**: Capital 'B' for Byte, lowercase 'b' for bit (e.g., Mbps = Megabits per second).

4. Numerical Representation in Computer Programs

4.1 Integer Data Types (Whole Numbers)

- Signed vs. Unsigned:
 - **Unsigned**: Non-negative only (0 to $2^n 1$).
 - **Signed**: Positive and negative (typically $-(2^{n-1})$ to $2^{n-1} 1$).
- Common Sizes:
 - 16-bit:
 - Unsigned: 0 to 65,535
 - Signed: -32,768 to 32,767
 - 32-bit:
 - Unsigned: 0 to 4.29×10^9

4.2 Floating-Point Data Types (Real Numbers)

- **Purpose**: Represent numbers with fractional parts (real numbers).
- Standard: IEEE 754 standard for consistent representation.
- Types:
- Binary32 (Single Precision): 32 bits
 - Binary64 (Double Precision): 64 bits (common default)
 - Binary128 (Quad Precision): 128 bits
- Structure: $\pm (1.M)_2 \times 2^E$

- Sign hit 1 hit (+)

4.2 Floating-Point Data Types (Cont.)

- Binary64 (Double Precision):
 - 1 bit sign
 - 11 bits exponent
 - 52 bits mantissa (fraction)
 - **Precision**: $\approx 15 17$ decimal digits.
 - Range: $\approx 10^{-308}$ to 10^{308} .
- Precision in Semiconductor Physics:
 - Energy scales: meV to MeV (e.g., $k_BT \approx 26$ meV at 300K, core electron energies can be keV).

5. Sources of Numerical Errors in Computation

- Computers use finite precision: Real numbers (infinite digits) must be approximated.
- Machine Epsilon: Smallest number such that $1 + \epsilon \neq 1$. Fundamental limit of floating-point precision.

5.1 Round-off Error

- Definition: Errors from inexact representation of real numbers in finite binary digits.
- **Example**: 0.1_{10} cannot be exactly represented in binary.
 - $-(0.1)_{10} = (0.0001100110011...)_2$ (repeating)

5.2 Overflow and Underflow

- Overflow: Result is too large for the data type.
 - Ex: Product of two large doubles exceeds 10^{308} .
- **Underflow**: Result is too small (too close to zero) to be represented accurately, often rounded to zero.
 - Ex: A double cannot represent numbers smaller than $\approx 10^{-308}$.
- Physical Example (Boltzmann Factor $\exp(-E/k_BT)$):
- $-E_g = 1.1 \text{ eV (Silicon)}, k_B T = 62 \text{ meV (specific context)}: \exp(-1.1/0.062) \approx \exp(-17.7) \approx 10^{-7.7} \text{ (No issue)}.$
 - $-E_{a} = 4 \text{ eV (Oxide)}, k_{B}T = 62 \text{ meV: } \exp(-4/0.062) \approx$

5.3 Truncation Error

- **Definition**: Error from approximating an infinite mathematical process with a finite one.
- **Example**: Using a finite number of terms in a Taylor series expansion:
- $f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x a)^n + R_N(x)$ $R_N(x)$ is the truncation error.

5.4 Convergence Error

6. Practical Implications & Avoiding Errors

6.1 Floating-Point Comparisons (if (x == y))

- **Problem**: Direct equality comparison of floats is unreliable due to round-off error.
 - if (3.0 * 10.0 == 30.0) might be False!
- **Solution**: Compare absolute difference with a small tolerance (epsilon).
- if $|val_1 val_2| < EPSILON$
 - EPSILON (e.g., 10^{-9} or 10^{-12}) accounts for small inaccuracies.

6.2 Converting Floating-Point to Integer

- **Problem**: int (9.999999999999) might yield 9 instead of 10.
- Solution: Add a small epsilon before conversion.
- int_value = int(floating_value + EPSILON)
 - This "nudges" values slightly below an integer threshold up.

6.3 Information Buried (Catastrophic Cancellation)

- **Problem**: Subtracting large, nearly equal numbers leads to significant digit loss.
- **Example**: Calculating $\exp(-x)$ for large positive x using its Taylor series:
- $\exp(-x) = 1 x + \frac{x^2}{2!} \frac{x^3}{3!} + \cdots$
- For x = 40, intermediate terms are very large, leading to significant cancellation and an incorrect result (e.g., 5.88 instead of 4.25 \times 10^{-18}).

7. Conclusion & Assignment Review

Key Takeaways:

- Computers use binary; other bases are for human convenience.
- Data types (int, float) have finite precision and range.
- Numerical errors (round-off, overflow, underflow, truncation, cancellation) are inherent.
- Crucial: Understand and mitigate these errors for reliable simulations.

Assignment Reminder:

- Problem 1: Base conversion (manual).
- Problem 2: Python code analysis.