
SEMICONDUCTOR ENGINEERING: NUMERICAL 
ANALYSIS & COMPUTER SIMULATIONS



Lecture 1: Fundamentals of Computer 
Simulation & Error Analysis



1. Course Introduction & Logistics

• Instructor: [Professor’s Name]
• Topics: Numerical analysis, computer simulations (Ch 1-7 by 

me)
• Today’s Focus: Fundamentals of computer simulation, sources 

of computational errors
• Recommended Texts:

– “Numerical Analysis”, “Numerical Simulation”
– “Numerical Recipes” for algorithms & programming

• Programming Tools:
– Text Editor: Microsoft Visual Studio Code recommended



2. Today’s Assignment (Due: Midnight, June 
11th)

Problem 1: Number Base Conversion (Manual Calculation 
Required) 1. Convert (101001)2 to Base 10. 2. Convert 
(4251)10 to Base 16. * Please solve manually first; programs can 
be used for verification.
Problem 2: Python Program Analysis 1. Choose one Python 
program from lecture materials. 2. Explain what each block/part 
of the source code does. 3. If unclear, list the parts you don’t 
understand and explain why. * Objective: Engage with code, 
even if not fully understood.



3. Fundamentals of Computer Representation

• Binary Nature: Computers operate using binary (base 2) 
states (0 or 1).
– CPU & memory are built with binary logic.
– Primitive expression in computers is Base 2.

• Human Convenience: Base 2 is verbose. We often use:
– Base 8 (Octal): Digits 0-7.
– Base 16 (Hexadecimal): Digits 0-9, A-F (A=10, F=15).



3.1 Number Base Conversion: Base-r to Base-
10

• General Formula: For a number (𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛−1 …𝑎𝑎1𝑎𝑎0)𝑟𝑟:
• (𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛−1 … 𝑎𝑎1𝑎𝑎0)𝑟𝑟 = 𝑎𝑎𝑛𝑛 ⋅ 𝑟𝑟𝑛𝑛 + 𝑎𝑎𝑛𝑛−1 ⋅ 𝑟𝑟𝑛𝑛−1 + ⋯+ 𝑎𝑎1 ⋅ 𝑟𝑟1 +
𝑎𝑎0 ⋅ 𝑟𝑟0

• Example 1: Decimal (Base 10) (1975)10 = 1 ⋅ 103 + 9 ⋅
102 + 7 ⋅ 101 + 5 ⋅ 100 = 1975

• Example 2: Binary (Base 2) (11011)2 = 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅
22 + 1 ⋅ 21 + 1 ⋅ 20 = 16 + 8 + 0 + 2 + 1 = 2710

• Example 3: Octal (Base 8) (53)8 = 5 ⋅ 81 + 3 ⋅ 80 = 40 +
3 = 4310

• Example 4: Hexadecimal (Base 16) (2𝐹𝐹)16 = 2 ⋅ 161 + 𝐹𝐹 ⋅



3.2 Number Base Conversion: Base-10 to Base-
r

• Method: Repeated division by r and collecting remainders in 
reverse order.

• Example: Convert 3910 to Base 8
1. 39 ÷ 8 = 4 remainder 7
2. 4 ÷ 8 = 0 remainder 4
3. Reading remainders upwards: (47)8

• Verification: 4 ⋅ 81 + 7 ⋅ 80 = 32 + 7 = 3910



3.3 Data Storage Units: Bits & Bytes

• Bit (b): Smallest unit of data (0 or 1).
• Byte (B): Fundamental group of 8 bits.

– Can represent 28 = 256 values (0-255).

• Prefixes (Binary vs. Decimal):
– Kilobyte (KB): 210 bytes = 1024 bytes
– Megabyte (MB): 220 bytes = 1,048,576 bytes
– Gigabyte (GB): 230 bytes = 1,073,741,824 bytes
– Terabyte (TB): 240 bytes = 1,099,511,627,776 bytes

• Note: Capital ‘B’ for Byte, lowercase ‘b’ for bit (e.g., Mbps = 
Megabits per second).



4. Numerical Representation in Computer 
Programs

4.1 Integer Data Types (Whole Numbers)
• Signed vs. Unsigned:

– Unsigned: Non-negative only (0 to 2𝑛𝑛 − 1).
– Signed: Positive and negative (typically −(2𝑛𝑛−1) to 2𝑛𝑛−1 − 1).

• Common Sizes:
– 16-bit:

• Unsigned: 0 to 65,535
• Signed: −32,768 to 32,767

– 32-bit:
• Unsigned: 0 to 4.29 × 109

Si d  2 14 109  2 14 109



4.2 Floating-Point Data Types (Real Numbers)
• Purpose: Represent numbers with fractional parts (real 

numbers).
• Standard: IEEE 754 standard for consistent representation.
• Types:

– Binary32 (Single Precision): 32 bits
– Binary64 (Double Precision): 64 bits (common default)
– Binary128 (Quad Precision): 128 bits

• Structure: ±(1.𝑀𝑀)2 × 2𝐸𝐸
– Sign bit: 1 bit (±)



4.2 Floating-Point Data Types (Cont.)
• Binary64 (Double Precision):

– 1 bit sign
– 11 bits exponent
– 52 bits mantissa (fraction)
– Precision: ≈ 15 − 17 decimal digits.
– Range: ≈ 10−308 to 10308.

• Precision in Semiconductor Physics:
– Energy scales: meV to MeV (e.g., 𝑘𝑘𝐵𝐵𝑇𝑇 ≈ 26 meV at 300K, core 

electron energies can be keV).
        



5. Sources of Numerical Errors in Computation

• Computers use finite precision: Real numbers (infinite digits) 
must be approximated.

• Machine Epsilon: Smallest number such that 1 + 𝜖𝜖 ≠ 1. 
Fundamental limit of floating-point precision.

5.1 Round-off Error
• Definition: Errors from inexact representation of real numbers 

in finite binary digits.
• Example: 0.110 cannot be exactly represented in binary.

– (0.1)10 = (0.0001100110011 … )2 (repeating)

       



5.2 Overflow and Underflow
• Overflow: Result is too large for the data type.

– Ex: Product of two large doubles exceeds 10308.

• Underflow: Result is too small (too close to zero) to be 
represented accurately, often rounded to zero.
– Ex: A double cannot represent numbers smaller than ≈ 10−308.

• Physical Example (Boltzmann Factor exp(−𝐸𝐸/𝑘𝑘𝐵𝐵𝑇𝑇)):
– 𝐸𝐸𝑔𝑔 = 1.1 eV (Silicon), 𝑘𝑘𝐵𝐵𝑇𝑇 = 62 meV (specific context): exp(−1.1/

0.062) ≈ exp(−17.7) ≈ 10−7.7 (No issue).
– 𝐸𝐸𝑔𝑔 = 4 eV (Oxide), 𝑘𝑘𝐵𝐵𝑇𝑇 = 62 meV: exp(−4/0.062) ≈

  



5.3 Truncation Error
• Definition: Error from approximating an infinite mathematical 

process with a finite one.
• Example: Using a finite number of terms in a Taylor series 

expansion:

• 𝑓𝑓(𝑥𝑥) = ∑𝑛𝑛=0𝑁𝑁 𝑓𝑓(𝑛𝑛)(𝑎𝑎)
𝑛𝑛!

(𝑥𝑥 − 𝑎𝑎)𝑛𝑛 + 𝑅𝑅𝑁𝑁(𝑥𝑥)
– 𝑅𝑅𝑁𝑁(𝑥𝑥) is the truncation error.

5.4 Convergence Error
        



6. Practical Implications & Avoiding Errors

6.1 Floating-Point Comparisons (if (x == y))
• Problem: Direct equality comparison of floats is unreliable 

due to round-off error.
– if (3.0 * 10.0 == 30.0) might be False!

• Solution: Compare absolute difference with a small tolerance 
(epsilon).

• if |val1 − val2| < EPSILON
– EPSILON (e.g., 10−9 or 10−12) accounts for small inaccuracies.



6.2 Converting Floating-Point to Integer
• Problem: int(9.999999999999999) might yield 9 

instead of 10.
• Solution: Add a small epsilon before conversion.
• int_value = int(floating_value + EPSILON)

– This “nudges” values slightly below an integer threshold up.



6.3 Information Buried (Catastrophic Cancellation)
• Problem: Subtracting large, nearly equal numbers leads to 

significant digit loss.
• Example: Calculating exp(−𝑥𝑥) for large positive 𝑥𝑥 using its 

Taylor series:

• exp(−𝑥𝑥) = 1 − 𝑥𝑥 + 𝑥𝑥2

2!
− 𝑥𝑥3

3!
+ ⋯

– For 𝑥𝑥 = 40, intermediate terms are very large, leading to significant 
cancellation and an incorrect result (e.g., 5.88 instead of 4.25 ×
10−18).

• Solution  Reform late the e pression to a oid cancellation



7. Conclusion & Assignment Review

• Key Takeaways:
– Computers use binary; other bases are for human convenience.
– Data types (int, float) have finite precision and range.
– Numerical errors (round-off, overflow, underflow, truncation, 

cancellation) are inherent.
– Crucial: Understand and mitigate these errors for reliable 

simulations.

• Assignment Reminder:
– Problem 1: Base conversion (manual).
– Problem 2: Python code analysis.

Sbi i LMS b idih J 11h


	Semiconductor Engineering: Numerical Analysis & Computer Simulations
	Lecture 1: Fundamentals of Computer Simulation & Error Analysis
	1. Course Introduction & Logistics
	2. Today’s Assignment (Due: Midnight, June 11th)
	3. Fundamentals of Computer Representation
	3.1 Number Base Conversion: Base-r to Base-10
	3.2 Number Base Conversion: Base-10 to Base-r
	3.3 Data Storage Units: Bits & Bytes
	4. Numerical Representation in Computer Programs
	スライド番号 10
	スライド番号 11
	5. Sources of Numerical Errors in Computation
	スライド番号 13
	スライド番号 14
	6. Practical Implications & Avoiding Errors
	スライド番号 16
	スライド番号 17
	7. Conclusion & Assignment Review

